首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mangerite magmatism associated with a probable Late-Permian to Triassic Hongseong–Odesan collision belt in South Korea
Authors:Chang Whan Oh  Sajeev Krishnan  Sung Won Kim  Yong Wan Kwon
Institution:aDepartment of Earth and Environmental Sciences, Chonbuk National University, Chonju, 561-756, South Korea;bInstitute of Natural Sciences, Okayama University of Science, Japan;cBasic Science Research Institute, Chonbuk National University, Chonju 561-756, South Korea
Abstract:The Odesan area in the eastern Gyeonggi Massif, South Korea, consists principally of migmatitic and porphyroblastic gneisses intruded by mangerite. Mafic mangerites with SiO2 contents from 52.40 to 54.20 wt.% have higher FeO* + MgO (14.98–18.28 wt.%) and CaO contents (5.80–7.84 wt.%) but lower total alkali contents (4.74 < Na2O + K2O < 5.80 wt.%) than felsic mangerites (55.9 < SiO2 < 60.61 wt.%, 9.51< FeO* + MgO < 11.62 wt.%, 3.28 < CaO < 5.68 wt.%, 6.72 < Na2O + K2O < 8.05 wt.%). Fe-numbers (FeO* / MgO + FeO*]) are 0.44–0.47 for mafic mangerites and 0.38–0.42 for felsic mangerites. The mangerites show calc-alkaline affinities in an AFM plot and resemble high-Ba–Sr granitoids with low Rb / Sr ratios of 0.25–0.10. Their MORB-normalized compositions show enrichment in LILE (decoupled LIL/HFS pattern) and negative anomalies in Ti–Nb–Ta. Their geochemical characters are consistent with their formation by partial melting of a basaltic source at temperatures higher than 1025 °C. The mangerites of the present study differ from mangerite formed in a typical within-plate tectonic setting in their high mg# and Sr concentrations and negative Nb and Ta anomalies. Their LILE enrichment and negative Ti–Nb–Ta anomalies could well have been inherited from a pre-collision subduction event. A mean U–Pb zircon age of 257 Ma for the mangerite demonstrates that the tectonic belt connecting the Hongseong and Odesan areas represents a probable extension of the late Permian–Triassic collision belt between the North China and South China blocks into South Korea, with collision occurred earlier in South Korea.
Keywords:Mangerite  Gyeonggi Massif  Collision  North China block  South China block
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号