首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Troubled waters: Environmental applications of electrical and electromagnetic methods
Authors:David C Nobes
Institution:(1) Department of Geological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
Abstract:The relatively new subdiscipline of environmental geophysics has grown enormously in the last five years. The size and diversity of the field, and the associated literature, is such that it is extremely difficult to keep up with even a small portion of the field. Electrical and electromagnetic (E & EM) methods, including ground penetrating radar and time-domain reflectometry, play a central role in environmental geophysics. One reason for the utility of E & EM methods in groundwater studies is the similarity in the way that current flow and fluid flow depend on the connectivity and geometry of the pores in soils and rocks. Another reason is the influence of the pore water quality on the geophysical response. More than any other geophysical technique, E & EM methods are directly affected by the presence of conductive pore fluids in the subsurface, such as leachates from landfill sites and sea water invading a coastal groundwater supply that has been placed under stress because of population expansion. The chloride ion is one of the most electrically active of the naturally-occurring ions, and allows us to detect sea water incursion; leachates from landfill sites contain the by-products of organic decay, such as acetic acid, which are generally less conductive than chloride, but nonetheless enhance the pore water and formation electrical conductivities. Landfill leachate plumes are thus easily mapped. The shallow subsurface electrical and dielectric properties exhibit hysteresis due to seasonal changes in water content; the physical properties will be different for the same degree of saturation, depending on whether the water level is rising or falling. Topographic effects are also important; an empirical correction method works well to remove a background trend in the conductivity due to changes in elevation. Heterogeneity and anisotropy of the electric properties may be related to similar effects in the hydraulic properties. New technology and the adaptation of existing technology has lead to the development of fresh instruments, such as electrode arrays towed across the ground, resistivity logging while drilling, fast-rise time TEM, NMR combined with TEM, electric quadripole, et cetera. The applications of E & EM methods cover a wide range of geographic areas and groundwater problems, but have had particularly wide use for groundwater exploration in arid and semi-arid regions, for mapping and monitoring salt-water incursion in susceptible aquifers, and for mapping and monitoring contaminants.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号