首页 | 本学科首页   官方微博 | 高级检索  
     


A Reflectivity Climatology Algorithm for Hybrid Scans and Its Application to Radar Coverage over the Tibetan Plateau
Authors:Wei Zhuang  Liping Liu
Affiliation:1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
2. Nanjing University of Information Science and Technology, Nanjing, 210044, China
Abstract:The traditional algorithm for hybrid radar scans uses standard terrain digital elevation model (DEM) data and the latitudes, longitudes and altitudes of contributing radar stations. While radar station location information is often inaccurate, signal blockages due to trees, buildings, and other surface objects are not included in the DEM data. Accordingly, hybrid scan elevations derived using this traditional algorithm are prone to errors. Here, reflectivity climatology data (the frequency of occurrence of reflectivity) are used to improve the algorithm for hybrid scans. Three parameters are introduced, then applied to evaluation of signal blockage for every radar bin using a fuzzy logic technique. This new algorithm provides an improved determination of the lowest unblocked elevation for hybrid scans. The new algorithm is validated by examining the scope and continuity of the calculated hybrid scan reflectivity in a case study, and the performance of this climatology-based algorithm is evaluated relative to the traditional terrain-based algorithm. The climatology-based hybrid scans are then used to examine the spatial coverage provided by the operational weather radar network over the Tibetan Plateau. The results indicate that the terrain-based hybrid scan algorithm introduced errors that caused obvious V-shaped gaps in hybrid scan reflectivity. By contrast, the climatology-based hybrid scan algorithm more accurately determined the lowest unblocked elevation and reduced the impacts of blockage. The coverage map illustrates the limitations of the weather radar network over the Tibetan Plateau. These limitations inhibit the usefulness of the radar data. Additional radar or observational data are needed to fill these gaps and minimize the impacts of signal blockage.
Keywords:hybrid scans   reflectivity climatology   complex terrain   radar coverage   Tibetan Plateau
本文献已被 SpringerLink 等数据库收录!
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号