首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Eemian and Early Weichselian temperature and precipitation variability in northern Germany
Authors:Norbert Kühl  Thomas Litt  Christian Schlzel  Andreas Hense
Institution:aInstitute for Palaeontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany;bMeteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn, Germany
Abstract:Dramatic changes in European vegetation occurred during the transition from the Eemian interglacial to Weichselian glacial climates, correlative with major changes in global ice core and marine records. Quantitative knowledge of climate change is important for understanding of the climate system and for climate modelling, for which reconstructions of this transitional period are of special interest. However, it has been difficult to quantify the climatic changes involved in the Eemian to Early Weichselian transition from terrestrial archives due to the lack of modern vegetation analogues. To circumvent this problem, we applied a suitable multivariate probabilistic approach to pollen and plant macrofossil assemblages to reconstruct temperature and precipitation for this transition in central Europe. Our reconstructions span the interval from the beginning of the Eemian (Marine Isotope Stage (MIS) 5e) to the Odderade interstadial (MIS 5a). They indicate a relatively stable Eemian, with increasing precipitation reducing the continentality of the climate with time. During the transition from the Eemian to the Herning stadial, mean July and January temperatures decreased by not, vert, similar4 °C and by as much as not, vert, similar20 °C, respectively. Temperatures remained high enough to support forests during the stadials, and we infer that the reconstructed decrease of precipitation below 500 mm per year caused the extirpation of forests during these periods. Thus, we conclude that precipitation, although difficult to reconstruct, is of vital importance for explaining vegetation change during the Eemian and Eemian/Early Weichselian transition.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号