首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Capillary geochemistry in non-saturated zone of soils. Water content and geochemical signatures
Authors:Marie Pettenati  Lionel Mercury  Mohamed Azaroual
Institution:aBRGM, 3 av. C. Guillemin, BP 6009, 45060 Orléans, France;bUMR-CNRS 8148 “IDES”, Université Paris-Sud, bat. 504, 91405 Orsay, France;cISTO, UMR 6113 – CNRS/Université d’Orléans, 1A rue de la Férollerie, 45071 Orléans Cedex, France
Abstract:The unsaturated zone (UZ) retains aqueous solutions against gravity by capillary forces. This suction state corresponds to a decreasing internal pressure of the water, which modifies its thermodynamic properties. Accordingly, the speciation of solutes and the solubility of solids and gases in such capillary solutions change. The volumetric capillary water content of the soil at high suction can be calculated extrapolating the water retention curves (WRC) with the Rossi–Nimmo model. Interestingly, several tens of liters per cubic meter of soil can be thus suctioned, a sufficiently large volume to support that: (1) capillary water is not restricted to nanosized pores, which means it disobeys the Young–Laplace law and is metastable with respect to vapor (superheating); and (2) the geochemistry of capillary solutions might significantly influence the subsurface mass transfer. Two field situations are here interpreted using the capillary thermodynamic properties: (1) the trapping of sand grains during the growth of desert roses (gypsum), and (2) the development of abnormal paragenetic sequences in some saprolites.The capillary approach is extended to the soil solids, so that the micro-mineralogy can be explicitly (though sketchily) integrated in the calculations. The key conclusion is that capillarity changes the saturation indexes (and so the reaction rates) at given solution composition, in a way consistent with the field observations. This perspective amounts to geochemically distinguishing the capillary and percolating solutions, which is interestingly analogous to the immobile and mobile water distinction already often integrated in UZ flow models.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号