首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The helicity of the velocity field for cellular convection in a rotating layer
Authors:A V Getling
Institution:1. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Abstract:The helicity of a cellular convective flow in a horizontal layer of a compressible fluid (gas) heated from below and rotating about the vertical axis is studied using finite-difference numerical simulations. The medium is assumed to be polytropically stratified. A thermal perturbation that produces a system of Bénard-type hexagonal convection cells is introduced at the initial time. Next, the cells are deformed by the action of the Coriolis force; however, at some stage of the evolution, the flow is nearly steady (at later times, the cells break down). For given Rayleigh and Prandtl numbers, the velocity-field helicity for this stage averaged over the layer increases with decreasing polytrope index (i.e., with increasing the curvature of the static entropy profile) and has a maximum at a certain rotational velocity of the layer. Numerical simulations of such quasi-ordered convective flows should reduce the uncertainties in estimates of the helicity, a quantity important for the operation of MHD dynamos.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号