首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An assessment of Bernese GPS software precise point positioning using IGS final products for global site velocities
Authors:F N Teferle  E J Orliac  R M Bingley
Institution:(1) Institute of Engineering Surveying and Space Geodesy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
Abstract:We assess the use of precise point positioning (PPP) within the Bernese GPS software (BSW) Version 5.0 over the period from 2000 to 2005. In our strategy, we compute a set of daily PPP solutions for international GNSS service (IGS) reference frame (IGb00) sites by fixing IGS final satellite orbits and clock products, followed by a Helmert transformation of these solutions into ITRF2000, forming a set of continuous position time series over the entire time span. We assess BSW PPP by comparing our set of transformation parameters with those produced by the IGS analysis centre coordinator (ACC) and our position time series with those of the Jet Propulsion Laboratory (JPL) and the Scripps Orbit and Permanent Array Centre at the Scripps Institute of Oceanography (SIO). The distributions of the north (N), east (E) and up (U) daily position differences are characterized by means and SD of +2.2 ± 4.8, −0.6 ± 7.9 and +4.8 ± 17.3 mm with respect to JPL, and of +0.1 ± 4.4, −0.1 ± 7.4 and −0.1 ± 11.8 mm with respect to SIO. Similarly, we find sub-millimetre mean velocity differences and SD for the N, E and U components of 0.9, 1.5 and 2.2 mm/year with JPL, and of 1.2, 1.6 and 2.3 mm/year with SIO. A noise analysis using maximum likelihood estimation (MLE) shows that when estimating global site velocities from our position time series, the series need to be on average up to 1.3 times longer than those of JPL and SIO, before an uncertainty of less than 0.5 mm/year is obtained.
Keywords:Bernese GPS software  Precise point positioning  GPS products  Site velocities  Plate motion
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号