首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Capturing the Atlantic cold tongue and coastal upwelling in an intermediate-level ocean model coupled to a regional climate model
Authors:Edward K Vizy  Kerry H Cook
Institution:1. Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, 1 University Station C1100, Austin, TX, 78712, USA
Abstract:Coupled atmosphere–ocean general circulation models are known to have difficulties simulating the cold tongue in the equatorial Atlantic Ocean. Here a regional climate model coupled to an intermediate-level mixed layer ocean model with Ekman dynamics is developed and used to better understand the seasonal evolution of the equatorial Atlantic cold tongue and upwelling off western Africa. Parameterization improvements are made to an earlier version of the ocean model to account for the variations in temperature and shearing stress at the base of the mixed layer. 90-km resolution sensitivity tests demonstrate that the development of the equatorial Atlantic cold tongue in the boreal spring/summer is captured only if seasonal variations in the temperature at the base of the ocean mixed layer are included. The development of cold temperatures off the northwest African coast in the late boreal winter/spring is found to be primarily associated with the net radiation balance as shortwave warming of the mixed layer is relatively low while latent cooling is relatively high yielding a net cooling of mixed layer temperatures, consistent with other studies. The westward extension of the Atlantic cold tongue is primarily due to the horizontal advection of cool water from the South Atlantic African coast. This coastal cooling is associated with vertical diffusion and vertical entrainment, while the vertical entrainment has a secondary and more localized role over the equatorial Atlantic.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号