首页 | 本学科首页   官方微博 | 高级检索  
     

基于SSA-Elman神经网络的电离层TEC短期预报模型
引用本文:汤俊,钟正宇,李垠健,高鑫. 基于SSA-Elman神经网络的电离层TEC短期预报模型[J]. 大地测量与地球动力学, 2022, 42(4): 378-383. DOI: 10.14075/j.jgg.2022.04.009
作者姓名:汤俊  钟正宇  李垠健  高鑫
作者单位:华东交通大学土木建筑学院,南昌市双港东大街 808 号,330013
摘    要:针对基于神经网络的电离层TEC短期预报存在精度较低、易陷入局部最优的问题,利用CODE中心提供的TEC数据及地磁活动指数,建立基于麻雀搜索算法(SSA)改进Elman神经网络的电离层TEC短期预报模型,并通过BP模型、Elman模型及SSA-Elman组合模型分别对电离层平静期和扰动期中低纬度TEC进行5 d连续预报....

关 键 词:电离层  总电子含量  麻雀搜索算法  神经网络  预报精度

Short-Term Prediction Model of Ionospheric TEC Based on SSA-Elman Neural Network
TANG Jun,ZHONG Zhengyu,LI Yinjian,GAO Xin. Short-Term Prediction Model of Ionospheric TEC Based on SSA-Elman Neural Network[J]. Journal of Geodesy and Geodynamics, 2022, 42(4): 378-383. DOI: 10.14075/j.jgg.2022.04.009
Authors:TANG Jun  ZHONG Zhengyu  LI Yinjian  GAO Xin
Abstract:We focus on the problems of low accuracy and easy to fall into local optimum in the short-term prediction of ionospheric TEC based on neural network. We use the TEC data and geomagnetic activity index provided by the CODE center to establish an improved Elman neural network model based on the sparrow search algorithm(SSA). The BP model, Elman model and SSA-Elman combined model are used to predict 5 days continuous TEC in the middle and low latitudes during the ionospheric quiet period and disturbance period. The experimental results show that when the optimized Elman neural network model is used to predict 5 days continuous TEC, the root mean square error of single day can reach 1.443 TECu, and the correlation coefficient can reach 0.976, which is better than BP model and Elman neural network model.
Keywords:ionosphere  TEC  sparrow search algorithm  neural network  prediction accuracy  
本文献已被 万方数据 等数据库收录!
点击此处可从《大地测量与地球动力学》浏览原始摘要信息
点击此处可从《大地测量与地球动力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号