首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的地震与爆破事件自动识别研究
引用本文:高永国,尹欣欣,李少华. 基于深度学习的地震与爆破事件自动识别研究[J]. 大地测量与地球动力学, 2022, 42(4): 426-430. DOI: 10.14075/j.jgg.2022.04.018
作者姓名:高永国  尹欣欣  李少华
作者单位:甘肃省地震局,兰州市东岗西路450 号,730000;中国地震局兰州岩土地震研究所,兰州市东岗西路450 号,730000
基金项目:兰州地球物理国家野外科学观测研究站项目;甘肃省地震局地震科技发展基金
摘    要:针对天然地震事件、爆破事件分类问题,使用甘肃及周边地区80个天然地震事件和20个爆破事件建立数据集,采取深度学习卷积神经网络(convolutional neural network,CNN)方法搭建两个不同结构的模型进行训练,并用500条训练集之外的天然地震事件与爆破事件波形作为测试数据集,其训练和测试准确率均达到9...

关 键 词:卷积神经网络  深度学习  震相  爆破  分类识别

Automatic Recognition of Earthquake and Blasting Events Based on Deep Learning
GAO Yongguo,YIN Xinxin,LI Shaohua. Automatic Recognition of Earthquake and Blasting Events Based on Deep Learning[J]. Journal of Geodesy and Geodynamics, 2022, 42(4): 426-430. DOI: 10.14075/j.jgg.2022.04.018
Authors:GAO Yongguo  YIN Xinxin  LI Shaohua
Abstract:Aiming at the classification of natural earthquake events and blasting events, we use 80 natural earthquake events and 20 blasting events in Gansu and its surrounding areas to establish datasets, and apply deep learning convolutional neural network(CNN) method to build two models with different structures for training, and use 500 waveforms of natural earthquakes events and blasting events out of the training sets as test datasets. The accuracy of training and testing is more than 90%. The results show that two training models designed in this paper have a certain generalization ability; especially the Inception V1 model has good effect in the classification and recognition of natural earthquake events and blasting events.
Keywords:convolutional neural network  deep learning  seismic phase  blasting  classification and recognition  
本文献已被 万方数据 等数据库收录!
点击此处可从《大地测量与地球动力学》浏览原始摘要信息
点击此处可从《大地测量与地球动力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号