首页 | 本学科首页   官方微博 | 高级检索  
     


Hydropeaking induces losses from a river reach: observations at multiple spatial scales
Authors:B. Yellen  D.F. Boutt
Affiliation:Department of Geosciences, University of Massachusetts, Amherst, MA, USA
Abstract:In humid regions, where gaining river conditions generally prevail, daily hydroelectric dam releases alter downstream surface water–groundwater interactions by reversing the head gradient between river and adjacent groundwater. Previously, it has been noted that artificial stage changes due to dam releases enhance hyporheic exchange. Here we investigate the regulated Deerfield River in northwestern Massachusetts at multiple scales to evaluate how changing downstream geologic conditions along the river mediate this artificial hyporheic pumping. Water budget analysis indicates that roughly 10% of bank‐stored water is permanently lost from the 19.5‐km river reach, likely as a result of transpiration by bank vegetation. An adjacent reference stream with similar dimensions and geomorphology, but without hydropeaking, shows predictable gaining conditions. Field observations from streambed piezometers and thermistors show that water losses are not uniform throughout the study reach. Riparian aquifer transmissivity in river sub‐reaches largely determines the magnitude of surface water–groundwater exchange as well as net water loss from the river. These newly documented losses from hydropeaking river systems should inform decisions by river managers and hydroelectric operators of additional tradeoffs of oscillatory dam‐release river management. Copyright © 2015 John Wiley & Sons, Ltd.
Keywords:hyporheic  hydropeaking  dam release  surface water‐groundwater  Deerfield River  streambed temperature
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号