首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A laser-ablation ICP-MS study of Apollo 15 low-titanium olivine-normative and quartz-normative mare basalts
Authors:Darren W Schnare  James MD Day  Marc D Norman  Yang Liu  Lawrence A Taylor
Institution:

aPlanetary Geosciences Institute, Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA

bDepartment of Geology, University of Maryland, College Park, MD 20742, USA

cResearch School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia

Abstract:Apollo 15 low-Ti mare basalts have traditionally been subdivided into olivine- and quartz-normative basalt types, based on their different SiO2, FeO, and TiO2 whole-rock compositions. Previous studies have reconciled this compositional diversity by considering the olivine- and quartz-normative basalts as originating from different lunar mantle source regions. To provide new information on the compositions of Apollo 15 low-Ti mare basalt parental magmas, we report a study of major and trace-element compositions of whole rocks, pyroxenes, and other phases in the olivine-normative basalts 15016 and 15555 and quartz-normative basalts 15475 and 15499. Results show similar rare-earth-element patterns in pyroxenes from all four basalts. The estimated equilibrium parental-melt compositions from the trace-element compositions of pyroxenes are similar for 15016, 15555 and 15499. Additionally, an independent set of trace-element distribution coefficients has been determined from measured pyroxene and mesostasis compositions in sample 15499. These data suggest that fractional crystallization may be a viable alternative to compositional differences in the mantle source to explain the not, vert, similar25% difference in whole-rock TiO2, and corresponding differences in SiO2 and FeO between the Apollo 15 olivine- and quartz-normative basalts. In this model, the older (not, vert, similar3.35 Ga) quartz-normative basalts, with lower TiO2 experienced olivine, chromite, and Cr-ulvöspinel fractionation at ‘crustal levels’ in magma chambers or dikes, followed by limited near-surface mineral fractionation, within the lava flows. In contrast, the younger (not, vert, similar3.25 Ga) olivine-normative basalts experienced only limited magmatic differentiation at ‘crustal-levels’, but extensive near-surface mineral fractionation to produce their evolved mineral compositions. A two-stage mineral-fractionation model is consistent with textural and mineralogical observations, as well as the mineral trace-element constraints developed by this study.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号