首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Deformation of natural gypsum rock: Mechanisms and questions
Authors:Dashnor Hoxha  Françoise Homand  Christophe Auvray
Institution:Laboratoire Environement Geomécanique et Ouvrages LaEGO-ENSG, Ecole Nationale de Géologie de Nancy, Rue du doyen Marcel Roubeault, B.P. 40 54501 Vandoeuvre-lès-Nancy, France
Abstract:The deformation mechanisms of a natural gypsum rock were investigated in instantaneous and long-term laboratory tests. The mechanical behaviour of this rock is strongly influenced by the relative humidity, but this influence seems to be more important on the long-term behaviour. Apart from classical plastic mechanisms, we identify a damage-like mechanism assisted by the variation in relative humidity. Even though this mechanism contributes to the increase of creep strain rate, laboratory evidence shows that it is unrelated to oriented cracking, as usually is the case with stress-induced damage. This mechanism is thought to be due to the migration of water molecules from their sites in the crystalline structure of gypsum (CaSO4·2H2O) while under stress. By entering the capillary space, these molecules contribute to the formation of adsorbed water layers and the increased thickness of these layers, thus reducing the interaction between neighbouring faces of gypsum crystals. So, more than effective stress, a complex mechanism reducing the creep activation energy, assisted by relative humidity and stress, is considered as the principal mechanism controlling the long-term behaviour of natural gypsum rock. Such a mechanism would also explain the traces of dissolution observed in pillars of underground gypsum quarries, where, because of the absence of water table, a dissolution-precipitation creep seems improbable.
Keywords:Mechanochemical reaction  Effective stress  Creep activation energy  Relative humidity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号