Deep-water sediment wave fields, bottom current sand channels and gravity flow channel-lobe systems: Gulf of Cadiz, NE Atlantic |
| |
Authors: | Edward L. Habgood,Neil H. Kenyon,Douglas G. Masson,rey Akhmetzhanov,Philip P. E. Weaver,Joan Gardner&dagger , Thierry Mulder&Dagger |
| |
Affiliation: | Challenger Division for Seafloor Processes, Southampton Oceanography Centre, European Way, Southampton SO14 3ZH, UK (E-mail: );Naval Research Laboratory, Marine Geosciences Division, 4555 Overlook Ave. SW, Washington, DC 20375, USA;Universitéde Bordeaux 1, Département de Géologie et Océanographie, UMR EPOC 5805, Avenue des Facultés, 33405 Talence Cedex, France |
| |
Abstract: | Abstract A study of the seafloor of the Gulf of Cadiz west of the Strait of Gibraltar, using an integrated geophysical and sedimentological data set, gives new insights into sediment deposition from downslope thermohaline bottom currents. In this area, the Mediterranean Outflow (MO) begins to mix with North Atlantic waters and separates into alongslope geostrophic and downslope ageostrophic components. Changes in bedform morphology across the study area indicate a decrease in the peak velocity of the MO from >1 m s?1 to <0·5 m s?1. The associated sediment waves form a continuum from sand waves to muddy sand waves to mud waves. A series of downslope‐oriented channels, formed by the MO, are found where the MO starts to descend the continental slope at a water depth of ≈700 m. These channels are up to 40 km long, have gradients of <0·5°, a fairly constant width of ≈2 km and a depth of ≈75 m. Sand waves move down the channels that have mud wave‐covered levees similar to those seen in turbidite channel–levee systems, although the channel size and levee thickness do not decrease downslope as in typical turbidite channel systems. The channels terminate abruptly where the MO lifts off the seafloor. Gravity flow channels with lobes on the basin floor exist downslope from several of the bottom current channels. Each gravity flow system has a narrow, slightly sinuous channel, up to 20 m deep, feeding a depositional lobe up to 7 km long. Cores from the lobes recovered up to 8·5 m of massive, well‐sorted, fine sand, with occasional mud clasts. This work provides an insight into the complex facies patterns associated with strong bottom currents and highlights key differences between bottom current and gravity flow channel–levee systems. The distribution of sand within these systems is of particular interest, with applications in understanding the architecture of hydrocarbon reservoirs formed in continental slope settings. |
| |
Keywords: | Bottom currents contourites Mediterranean Outflow sand lobes sediment waves sidescan sonar |
|
|