首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Distinct Modes of Winter Arctic Sea Ice Motion and Their Associations with Surface Wind Variability
Authors:WU Bingyi and Mark A JOHNSON
Institution:Chinese Academy of Meteorological Sciences, Beijing 100081, Arctic Region Supercomputing Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA,Institute of Marine Science, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Abstract:Using monthly mean sea ice velocity data obtained from the International Arctic Buoy Programme (IABP) for the period of 1979--1998 and the monthly mean NCEP/NCAR re-analysis dataset (1960--2002), we investigated the spatiotemporal evolution of the leading sea ice motion mode (based on a complex correlation matrix constructed of normalized sea ice motion velocity) and their association with sea level pressure (SLP) and the predominant modes of surface wind field variability. The results indicate that the leading winter sea ice motion modes spatial evolution is characterized by two alternating and distinct sea ice modes, or their linear combination. One mode (M1) shows a nearly closed cyclonic or anti-cyclonic circulation anomaly in the Arctic Basin and its marginal seas, resembling to a large extent the response of sea ice motion to the Arctic Oscillation (AO), as many previous studies have revealed. The other mode (M2) displays a coherent cyclonic or anti-cyclonic circulation anomaly with its center close to the Laptev Sea, which has not been identified in previous observational studies. In fact, M1 and M2 respectively reflect the responses of sea ice motion to two predominant modes of winter surface wind variability north of 70N, which well correspond, with slight differences, to the first two modes of EOF analysis of winter monthly mean SLP north of 70N. These slight differences in SLP anomalies lead to a difference of M2 from the response of sea ice motion to the dipole anomaly. Although the AO significantly influences sea ice motion, it is not crucial for the existence of M1. The new sea ice motion mode (M2) has the largest variance and clearly differs from the response of winter monthly mean sea ice motion to the dipole anomaly in SLP fields, and corresponding SLP anomalies also show differences compared to the dipole anomaly. This study indicates that in the Arctic Basin and its marginal seas, slight differences in SLP anomaly patterns can force distinctly different sea ice motion anomalies.
Keywords:distinct mode  Arctic sea ice motion  Arctic surface wind forcing  
本文献已被 CNKI 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号