首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络与遗传算法反演大气温湿廓线
引用本文:张天虎,鲍艳松,钱芝颖,林利斌,刘旭林,李林,侯岳,雷红玉,李广文,马军,管琴,唐维尧. 基于BP神经网络与遗传算法反演大气温湿廓线[J]. 热带气象学报, 2020, 36(1): 97-107. DOI: 10.16032/j.issn.1004-4965.2020.010
作者姓名:张天虎  鲍艳松  钱芝颖  林利斌  刘旭林  李林  侯岳  雷红玉  李广文  马军  管琴  唐维尧
作者单位:1.南京信息工程大学气象灾害预报预警与评估协同创新中心/中国气象局气溶胶与云降水重点开放实验室,江苏 南京 210044
基金项目:国家重点研发计划2017YFC15017043国家重点研发计划2016YFA0600703江苏省研究生科研创新计划项目KYCX18_1026
摘    要:为提高地基微波辐射计大气探测精度,融合BP神经网络与遗传算法,研究0~10 km大气温湿度廓线。首先,结合数据特征,基于数值模拟技术,建立一套TP/WVP-3000型号地基微波辐射计的一级数据质量控制和订正模型。然后,为减小训练样本代表性误差对模型反演精度的影响,利用遗传算法优化训练样本数据,建立一套精度更高的神经网络大气温湿度反演模型。最后,利用构建的反演模型,开展大气温湿度反演试验,结合探空资料和微波辐射计二级产品,评价反演模型精度。研究结果表明:(1)经过质量控制后的实测数据与模拟数据之间的相关性有显著提升;(2)经过质量控制与订正后建立的神经网络模型对比原微波辐射计二级产品的反演精度有一定提升,温度提升6.77%,湿度提升20.11%;(3)经过遗传算法优化后的训练样本所建立的神经网络反演模型对比原微波辐射计二级产品反演精度有进一步的提升,温度提升10.21%,湿度提升23.75%,反演结果与该地区同类型研究结果相比有着较大提升。 

关 键 词:微波辐射计   遗传算法   BP神经网络   大气廓线   质量控制
收稿时间:2019-02-18

ATMOSPHERIC TEMPERATURE AND HUMIDITY PROFILE RETRIEVALS BASED ON BP NEURAL NETWORK AND GENETIC ALGORITHM
ZHANG Tian-hu,BAO Yan-song,QIAN Zhi-ying,LIN Li-bin,LIU Xu-lin,LI Lin,HOU Yue,LEI Hong-yu,LI Guang-wen,MA Jun,GUAN Qin,TANG Wei-yao. ATMOSPHERIC TEMPERATURE AND HUMIDITY PROFILE RETRIEVALS BASED ON BP NEURAL NETWORK AND GENETIC ALGORITHM[J]. Journal of Tropical Meteorology, 2020, 36(1): 97-107. DOI: 10.16032/j.issn.1004-4965.2020.010
Authors:ZHANG Tian-hu  BAO Yan-song  QIAN Zhi-ying  LIN Li-bin  LIU Xu-lin  LI Lin  HOU Yue  LEI Hong-yu  LI Guang-wen  MA Jun  GUAN Qin  TANG Wei-yao
Affiliation:1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China;2. School of Atmospheric physics, Nanjing University of Information Science and Technology, Nanjing 210044, China;,1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China;2. School of Atmospheric physics, Nanjing University of Information Science and Technology, Nanjing 210044, China;,1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China;2. School of Atmospheric physics, Nanjing University of Information Science and Technology, Nanjing 210044, China;,Shenzhen Airlines, Shenzhen 518101, China,Beijing Municipal Meteorological Observation Center, Beijing 100089, China,Beijing Municipal Meteorological Observation Center, Beijing 100089, China,Geermu Meteorological Bureau of Qinghai Province, Geermu 816099, China,Geermu Meteorological Bureau of Qinghai Province, Geermu 816099, China,Geermu Meteorological Bureau of Qinghai Province, Geermu 816099, China,Geermu Meteorological Bureau of Qinghai Province, Geermu 816099, China,Qinghai Meteorological office, Xining 810001, China and 1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China;2. School of Atmospheric physics, Nanjing University of Information Science and Technology, Nanjing 210044, China;
Abstract:In order to improve the sounding accuracy of ground-based microwave radiometer, the atmospheric temperature and humidity profiles of 0-10km are studied by combining BP neural network and genetic algorithm. Firstly, based on numerical simulation technology, a set of level 1 data''s quality control and correction model of TP/WVP-3000 ground-based microwave radiometer is established. Then, in order to reduce the influence of training sample errors on the accuracy of retrieval model, genetic algorithm is used to optimize training sample data, and a set of more accurate neural network to retrieve atmospheric temperature and humidity is established. Finally, the model is used to carry out atmospheric temperature and humidity retrieval experiments, and then experiment results are combined with sounding data and microwave radiometer''s level 2 data to evaluate the accuracy of the retrieval model. Results show that: (1) the consistency between the measured data and the simulated data after quality control is significantly improved; (2) Compared with the level2 data of microwave radiometer, the retrieval accuracy of the neural network model after quality control and correction has a certain improvement, including a 6.77% improvement in temperature and a 20.11% improvement in humidity; (3) Compared with the level2 data of microwave radiometer, the retrieval accuracy of the neural network retrieval model based on the genetic algorithm optimized training sample has a further improvement, including a 10.21% improvement in temperature improved and a 23.75% improvement in humidity. Slightly superior results are achieved with our algorithm.
Keywords:microwave radiometer   genetic algorithm   BP neural network   atmospheric profile   quality control
本文献已被 CNKI 等数据库收录!
点击此处可从《热带气象学报》浏览原始摘要信息
点击此处可从《热带气象学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号