摘 要: | 针对多尺度遥感图像灰度差异大的特点,利用特征集形状进行配准,提出了一种改进的Hausdorff距离及相应的图像匹配算法。首先采用基于尺度不变特征转换(scale-invariant feature transform,SIFT)的特征提取方法,提取多尺度图像间的尺度不变特征;然后利用Hausdorff距离作为适应度函数,通过遗传算法(genetic algorithm,GA)寻求图像间的几何变换参数;最后将待配准图像经过几何变换以及重采样与参考图像匹配,实现多尺度遥感图像的配准。实验结果表明,改进的Hausdorff距离算法与传统的Hausdorff相比,具有较高的配准精度和较快的配准速度,且稳定性和抗噪性更高,更适合用于图像配准。
|