首页 | 本学科首页   官方微博 | 高级检索  
     

基于无人机遥感的古银叶树群落健康快速诊断
引用本文:孙中宇,黄钰辉,杨龙,王重洋,孙红斌,王佐霖,张卫强,甘先华. 基于无人机遥感的古银叶树群落健康快速诊断[J]. 热带地理, 2019, 39(4): 538-545. DOI: 10.13284/j.cnki.rddl.003156
作者姓名:孙中宇  黄钰辉  杨龙  王重洋  孙红斌  王佐霖  张卫强  甘先华
作者单位:(1. 广东省地理空间信息技术与应用公共实验室//广州地理研究所,广州 510070;2. 广东省森林培育与保护利用重点实验室// 广东省林业科学研究院,广州 510520;3. 广东省深圳市野生动物救助中心,广东 深圳 518040)
基金项目:广东省科技计划(2017A020216022、2018B030324002);坝光银叶树湿地园监测项目
摘    要:采用无人机低空遥感与地面调查相结合的方法对邻海陆地、远海陆地和盐生沼泽生境的古银叶树群落健康进行评价,利用冠层高度、林窗特征、光合有效辐射截面比、归一化植被指数(NDVI)、氮素反射指数(NRI)、黄色波段指数(YI)以及森林健康指数(FHI)等遥感指标指征古银叶树群落的健康状况。空-地结合的调查结果表明:1)盐生沼泽生境的古树由于树龄高,其树洞大且数量多,生境内生物多样性最低,邻海陆地生境的生物多样性最高。2)盐生沼泽生境的冠层高度最低;林窗面积最大,数量最少,形状复杂度最低;光合有效辐射截面比最小。以上指标在邻海陆地和远海陆地间差异不明显。NDVI、NRI、YI以及FHI的数值均表现出盐生沼泽小于远海陆地和邻海陆地的趋势,而在远海陆地和邻海陆地间的差异较小。3)无人机遥感的评价结果与地面调查结果契合度较高,客观地反映了不同生境古银叶树的健康状态。基于无人机遥感的评价体系在针对具体植物群落修改完善后,可以作为一种快速、无损和定量化的古树群落健康诊断方法。

关 键 词:无人机遥感  定量化评价  快速诊断  群落健康  植被指数  

Rapid Diagnosis of Ancient Heritiera littoralis Community Health Using UAV Remote Sensing
Sun Zhongyu,Huang Yuhui,Yang Long,Wang Chongyang,Sun Hongbin,Wang Zuolin,Zhang Weiqiang and Gan Xianhua. Rapid Diagnosis of Ancient Heritiera littoralis Community Health Using UAV Remote Sensing[J]. Tropical Geography, 2019, 39(4): 538-545. DOI: 10.13284/j.cnki.rddl.003156
Authors:Sun Zhongyu  Huang Yuhui  Yang Long  Wang Chongyang  Sun Hongbin  Wang Zuolin  Zhang Weiqiang  Gan Xianhua
Affiliation:(1. Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangzhou 510070, China; 2. Guangdong Provincial Key Laboratory of Forest Culture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; 3. Shenzhen Wild Animal Rescue Center, Shenzhen 518040, China)
Abstract:We evaluated the health of ancient Heritiera littoralis communities in landward terrestrial, seaward terrestrial, and halophytic marsh habitats using UAV remote sensing combined with ground surveys. Remote sensing indicators such as canopy height, forest window characteristics, photosynthetic effective radiation cross section ratio, Normalized Difference Vegetation Index (NDVI), Nitrogen Reflection Index (NRI), Yellow band Index (YI), and Forest Health Index (FHI) were used to indicate the health of ancient H. littoralis communities. The sky-ground combined survey indicated that: 1) Ancient H. littoralis tree holes were larger and more common in the halophytic marsh habitat due to their age. Moreover, the halophytic marsh habitat had the lowest biodiversity, with the highest biodiversity found in the seaward terrestrial habitat. 2) The lowest canopy height was found in the halophytic marsh habitat, with few large canopy gaps and the lowest shape complexity and photosynthetic effective radiation cross section ratio. The above indexes displayed little difference between the landward and seaward terrestrial habitats. NDVI, NRI, YI, and FHI values all tended to be lower in halophytic marshes than in landward and seaward terrestrial habitats, with no significant difference between the landward and seaward terrestrial habitats. 3) The UAV remote sensing survey results exhibited good correlation with the ground survey results, objectively reflecting the health of ancient H. littoralis communities in different habitats. After further improvements for specific communities, the evaluation system based on UAV remote sensing could be a rapid, non-destructive, and quantitative method for diagnosing ancient tree health.
Keywords:UAV remote sensing   quantitative assessment   rapid diagnosis   community health   vegetation index  
本文献已被 CNKI 等数据库收录!
点击此处可从《热带地理》浏览原始摘要信息
点击此处可从《热带地理》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号