首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A new laboratory set-up for measurements of electrical, hydraulic, and osmotic fluxes in clays
Authors:Katja Heister  Pieter J Kleingeld  Thomas JS Keijzer  JP Gustav Loch
Institution:

Department of Earth Sciences—Geochemistry, Faculty of Geosciences, Utrecht University, PO Box 80021, 3508 TA Utrecht, The Netherlands

Abstract:If clays are subjected to flows of fluid, electrical charge, chemicals, or heat, in most cases, flows of different types occur simultaneously, even if only one driving force is acting. These are so-called coupled flows. Examples of coupling phenomena are streaming potential and electroosmosis, induced by the flows of fluid and electrical charge, respectively.

Since the 1960s, laboratory devices have been constructed to measure streaming potentials and/or electroosmosis in clays or clayey soils. Due to their mechanical and hydraulic properties, clays are not easy to work with. Consequently, laboratory devices have to deal with various complications. A new design for an experimental set-up is proposed. Contrary to earlier devices, the clay sample is mounted in a flexible wall permeameter, which avoids sidewall leakage caused by the possible swell or shrink of the clay. Gold-coated gauze electrodes completely cover the surfaces of the sample, which are in contact with the solution reservoirs that ensure one-dimensional flow. In addition, the thickness of the sample is monitored during the experiment. The chemical composition of the reservoir fluids is controlled during the experiment. The device is flexible with respect to changing the solutions of both reservoirs independently, applying different hydraulic gradients, and measuring or applying electrical potentials. Finally, it is possible to mount undisturbed clay samples in the set-up, keeping them in situ during the whole experiment.

With this set-up, an extensive program of measurements of coupling phenomena like streaming potentials, electroosmosis, and membrane potentials in a sodium montmorillonite is started. Preliminary results of streaming potential measurements are presented and demonstrate that the build-up of a streaming potential due to a hydraulic gradient is a reproducible process that influences the water flow through the clay, and that the extent of the streaming potential depends on the salt concentration of the permeating solution.

Keywords:Bentonite  Coupled flow  Electroosmosis  Flexible wall permeameter  Irreversible thermodynamics  Streaming potential
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号