Control of bacterial growth by temperature and organic matter in the Western Arctic |
| |
Authors: | David L. Kirchman Rex R. Malmstrom Matthew T. Cottrell |
| |
Affiliation: | College of Marine Studies, University of Delaware, Lewes, DE 19958, USA |
| |
Abstract: | Temperature is thought to have a disproportionate role in controlling bacterial growth in perennially cold waters like the Western Arctic Ocean. One impact of temperature is that bacteria in cold waters may require more dissolved organic material (DOM) in order to approach growth rates observed at higher temperatures (the Wiebe–Pomeroy hypothesis). To explore these issues, this study examined the effect of DOM additions and temperatures shifts on bacterial assemblages during short (2 h) and long (up to 10 days) incubations. We found that the temperature response for bacterial assemblages in the Western Arctic was similar to that observed in temperate waters; the Q10 values for leucine and thymidine incorporation were 3.1±2.6 and 1.9±0.56, respectively, not significantly different from values observed in the equatorial Pacific Ocean. In contrast to what would be predicted from the Wiebe–Pomeroy hypothesis, the impact of DOM additions on leucine incorporation either was the same or greater at higher, not lower temperatures. Increasing the incubation temperature did stimulate leucine incorporation more quickly than did DOM additions, but DOM seems as important as temperature in controlling bacterial growth. Leucine incorporation rates per cell (an index of community growth rates) observed in these experiments varied greatly and approached rates observed in waters warmer by 25 °C. These results suggest that the role of temperature in controlling bacterial growth in the Western Arctic is similar to that in low-latitude ocean. |
| |
Keywords: | Bacterial growth Arctic Ocean Leucine incorporation Climate change DOC Temperature |
本文献已被 ScienceDirect 等数据库收录! |
|