首页 | 本学科首页   官方微博 | 高级检索  
     


Englacial and subglacial water flow at Skálafellsjökull,Iceland derived from ground penetrating radar,in situ Glacsweb probe and borehole water level measurements
Authors:Jane K. Hart  Kathryn C. Rose  Alexander Clayton  Kirk Martinez
Affiliation:1. Geography and Environment, University of Southampton, Southampton, UK;2. School of Geographical Sciences, University of Bristol, Bristol, UK
Abstract:We reconstruct englacial and subglacial drainage at Skálafellsjökull, Iceland, using ground penetrating radar (GPR) common offset surveys, borehole studies and Glacsweb probe data. We find that englacial water is not stored within the glacier (water content ~0–0.3%). Instead, the glacier is mostly impermeable and meltwater is able to pass quickly through the main body of the glacier via crevasses and moulins. Once at the glacier bed, water is stored within a thin (1 m) layer of debris‐rich basal ice (2% water content) and the till. The hydraulic potential mapped across the survey area indicates that when water pressures are high (most of the year), water flows parallel to the margin, and emerges 3 km down glacier at an outlet tongue. GPR data indicates that these flow pathways may have formed a series of braided channels. We show that this glacier has a very low water‐storage capacity, but an efficient englacial drainage network for transferring water to the glacier bed and, therefore, it has the potential to respond rapidly to changes in melt‐water inputs. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.
Keywords:GPR  subglacial hydrology  subglacial processes  debris‐rich basal ice  glacier water content
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号