首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Planetary boundary layer over monsoon trough region in a high resolution primitive equation model
Authors:K V J Potty  U C Mohanty  B Nandi  K J Ramesh
Institution:1. Centre for Atmospheric Sciences, Indian Institute of Technology, Hauz Khas, 110016, New Delhi, India
Abstract:Numerical experiment with improved boundary layer physics has been performed to study the Planetary Boundary Layer (PBL) characteristics over the monsoon trough region. Details of the evolution and structure of the associated boundary layer processes in the monsoon trough and adjoining oceanic regions are examined by integrating the model up to a period of 48 hours. The model used for this study is a high resolution primitive equation, one with 0·5o latitude/longitude horizontal resolution and 16 levels in the vertical (7 levels in the PBL). The boundary layer treatment in the model is based on the Monin-Obukhov similarity theory for the surface layer and Turbulent Kinetic Energy (TKE) formulation based onE-ε approach for the mixed layer. The model is integrated using the FGGE level IIIb analysis of European Centre for Medium Range Weather Forecasts (ECMWF), U.K. The study shows that the diurnal variation of TKE over land is a dominant feature comparing with that over the ocean. Along the monsoon trough region, TKE increases from the eastern end to the western side which is mainly associated with the enhancement of sensible heat flux as we move from the eastern wet land to the western desert sector. It may be noted that the low level wind maximum, which is a characteristic feature over the monsoon region, is well simulated by this improved model physics.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号