首页 | 本学科首页   官方微博 | 高级检索  
     

北印度洋半日潮波的数值模拟研究
引用本文:万荣强,魏泽勋,高秀敏,徐晓庆,滕 飞. 北印度洋半日潮波的数值模拟研究[J]. 海洋科学进展, 2020, 38(4): 562-573. DOI: 10.3969/j.issn.1671-6647.2020.04.002
作者姓名:万荣强  魏泽勋  高秀敏  徐晓庆  滕 飞
作者单位:自然资源部 第一海洋研究所,山东 青岛 266061,自然资源部 第一海洋研究所,山东 青岛 266061;青岛海洋科学与技术试点国家实验室 区域海洋动力学与数值模拟功能实验室,山东 青岛 266061
基金项目:国家重点研发计划项目——大气海洋耦合机制、同化方法与数值模式研究(2017YFC1404201);中国大洋矿产资源研究开发协会“十三五”资源与环境项目——印度洋九十度海岭生态环境监测保护(DY135-E2-4);国家电网公司科技项目——海底电缆工程高精度多元数据获取及分析技术研究JYYKJXM[2017]003)
摘    要:基于FVCOM(Finite Volume Coast and Ocean Model)模型,建立北印度洋海域(31°~102°E,16°S~31°N)的M2和S2分潮潮波数值模式,研究北印度洋半日潮潮汐、潮流分布特征。对底摩擦系数进行数值试验,利用代价函数梯度下降法,得到分潮调和常数向量均方根偏差(RMSE)的变化曲线,逼近并确定最优的底摩擦系数。将采用该系数的模拟结果与TOPEX/Poseidon卫星高度计交叉点的调和常数数据、国际海道测量组织(IHO)及部分文献中的验潮站数据进行比较与验证,一致性较好。其中对比卫星数据的振幅偏差为2~4 cm、迟角偏差为7°~8°,与验潮站数据的振幅偏差为3~6 cm、迟角偏差为8°~9°。根据模拟结果,分析了北印度洋海域M2和S2分潮潮波传播特征和潮流椭圆的空间分布特征等。M2分潮潮波在阿拉伯海南部有1个无潮点,在波斯湾内有2个无潮点,最大振幅超过80 cm;潮流在西北印度洋和孟加拉湾中部大多为顺时针旋转,其余海域大多为逆时针旋转;流速在阿拉伯海东北部、安达曼海、波斯湾和孟加拉湾北部较大,最大流速为160 cm/s,其他海域较小。S2分潮的潮波传播特征、无潮点的位置和潮流椭圆的空间分布特征等都与M2分潮类似,但潮波振幅和潮流流速等都相对M2分潮较小。研究完善了北印度洋海域2个主要半日分潮M2和S2的整体特征。

关 键 词:北印度洋  潮汐潮流  Chezy型摩擦关系  有限体积海岸海洋模型(FVCOM)

Numerical Simulation of Semi-diurnal Tidal Waves in the Northern Indian Ocean
WAN Rong-qiang,WEI Ze-xun,GAO Xiu-min,XU Xiao-qing,TENG Fei. Numerical Simulation of Semi-diurnal Tidal Waves in the Northern Indian Ocean[J]. Advances in Marine Science, 2020, 38(4): 562-573. DOI: 10.3969/j.issn.1671-6647.2020.04.002
Authors:WAN Rong-qiang  WEI Ze-xun  GAO Xiu-min  XU Xiao-qing  TENG Fei
Affiliation:1. First Institute of Oceanography, MNR, Qingdao 266061, China;2. Laboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China
Abstract:Based on the Finite Volume Coast and Ocean Model (FVCOM ), a numerical model for M2 and S2 tidal waves in the Northern Indian Ocean (from 31°E to 102°E, from 16°S to 31°N) is established, and the characteristics of Semi-diurnal tides and tidal currents are investigated. We carried out a numerical test on the coefficient of bottom friction by using cost function gradient descent method, in which the change curve of root mean square errors (RMSE) of tidal constituent harmonic constant vector is obtained and optimal bottom friction coefficient is thus determined. Simulation results based on the optimal coefficient are compared and verified with the harmonic constants at the satellite altimeter intersection points of TOPEX/Poseidon, provided by the International Hydrographic Organization (IHO), and measured at tidal gauge stations, and the results are in good agreement with the observational data. It shows that the deviation of the simulated amplitude is from 2 cm to 4 cm and that of phase-lag is about from 7° to 8° whenc ompared with the T/P data; the deviation of amplitude is about from 3 cm to 6 cm and that of phase-lag is about from 8° to 9° when compared with the tide station data. We also analyzed M2 and S2 tidal propagation characteristics and spatial distribution of tidal ellipses in the region, and found that the M2 tidal constituent has an amphidromic point in the southern Arabian Sea and two amphidromic points in the Persian Gulf, with maximum amplitude exceeding 80 cm, and the tidal current is mostly clockwise in the northwest Indian Ocean and central Bay of Bengal. The tidal current velocity is larger in the northeast of the Arabian Sea, the Andaman Sea, the Persian Gulf and the northern part of the Bay of Bengal, with maximum velocity of 160 cm/s. Tidal wave propagation characteristics, location of amphidromic point, and spatial distribution of tidal ellipse of S2 are similar to those of M2, but tidal wave amplitude and tidal current velocity of S2 are relatively smaller than those of M2.
Keywords:Northern Indian Ocean   tide and tidal current   Chezy bottom friction relationship   Finite Volume Coast and Ocean Model(FVCOM)
本文献已被 万方数据 等数据库收录!
点击此处可从《海洋科学进展》浏览原始摘要信息
点击此处可从《海洋科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号