首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chalcophile element constraints on magma differentiation of Quaternary volcanoes in Tengchong,SW China
Institution:1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550005, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;1. State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China;2. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China;1. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi''an 710069, China;2. School of Earth Sciences and Resources, China University of Geosciences Beijing, 29 Xueyuan Road, Beijing 100083, China;3. Centre for Tectonics, Exploration and Research, University of Adelaide, Adelaide, SA 5005, Australia
Abstract:The Tengchong volcanic field comprises numerous Quaternary volcanoes in SW China. The volcanic rocks are grouped into Units 1–4 from the oldest to youngest. Units 1, 3 and 4 are composed of trachybasalt, basaltic trachyandesite and trachyandesite, respectively, and Unit 2 consists of hornblende-bearing dacite. This rock assemblage resembles those of arc volcanic sequences related to oceanic slab subduction. Rocks of Units 1 and 3 contain olivine phenocrysts with Fo contents ranging from 65 to 85 mole%, indicating early fractionation of olivine and chromite prior to the eruption of magma. All the rocks from Units 1, 3 and 4 have very low PGE concentrations, with <0.05 ppb Ru and Rh, <0.2 ppb Pt and Pd, and Ir that is commonly close to, or slightly higher than detection limits (0.001 ppb). The small variations of Pt/Pd ratios (0.4–2.2) are explained by fractionation of silicate and oxide minerals. The 5-fold variations in Cu/Pd ratios (200,000–1,000,000) for the lavas at Tengchong, which do not vary systematically with fractionation, likely reflect retention of variable amounts of residual sulfide in the mantle source. In addition, all the rocks from Units 1, 3 and 4 have primitive mantle-normalized chalcophile element patterns depleted in PGE relative to Cu. Together with very low Cu/Zr ratios (0.06–0.24), these rocks are considered to have undergone variable degrees of sulfide-saturated differentiation in shallow crustal staging magma chambers. Large amounts of olivine and chromite crystallization probably triggered sulfide saturation of magma at depth for Units 1 and 3, whereas crustal contamination was responsible for sulfide saturation during ascent of magma for Unit 4.
Keywords:Arc-like volcanic rocks  Platinum-group elements  Magma chamber processes  Tengchong  SW China
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号