首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Provenance of sediments from Mesozoic basins in western Shandong: Implications for the evolution of the eastern North China Block
Institution:1. Geological Institute, Russian Academy of Sciences, Moscow, Russia;2. Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia;3. Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences, Moscow, Russia;4. Department of Geological Sciences, 241 Williamson Hall, Gainesville, FL 32611, USA;1. Key Laboratory of Geobiology and Environmental Geology, Ministry of Education, China University of Geosciences, Wuhan, Hubei 430074, China;2. School of Earth Sciences, China University of Geosciences, Wuhan, Hubei 430074, China;3. Department of Anthropology, University of Hawaii at Manoa, 2424 Maile Way 346 Saunders Hall, Honolulu, HI 96822, USA;4. Department of Atmospheric Science, School of Environmental Sciences, China University of Geosciences, Wuhan, Hubei 430074, China;5. NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen N-5007, Norway
Abstract:This paper reports LA–ICP–MS U–Pb dates and in situ Hf isotope analyses of detrital zircons from the Mesozoic basins in western Shandong, China, with the aim to constrain the depositional ages and provenances of the Mesozoic strata as well as the Mesozoic tectonic evolution of the eastern North China Block (NCB). The Mesozoic strata in western Shandong, from bottom to top, include the Fenghuangshan, Fangzi, Santai and Wennan formations. Most of the analyzed zircon grains exhibit oscillatory growth zoning and have relatively high Th/U ratios (generally 0.2–3.4), suggesting a magmatic origin. Zircons from the Fenghuangshan Formation in the Zhoucun Basin yield six main age populations (2489, 1854, 331, 305, 282, and 247 Ma). Zircons from the Fangzi Formation in the Zhoucun and Mengyin basins yield eight main age populations (2494, 1844, 927, 465, 323, 273, 223, and 159 Ma) and ten main age populations (2498, 1847, 932, 808, 540, 431, 315, 282, 227, and 175 Ma), respectively, whereas zircons from the Santai Formation in the Zhoucun and Mengyin basins yield nine main age populations (2519, 1845, 433, 325, 271, 237, 192, 161, and 146 Ma) and six main age populations (2464, 1845, 853, 277, 191, and 150 Ma), respectively. Five main age populations (2558, 1330, 609, 181, and 136 Ma) are detected for zircons from the Wennan Formation in the Pingyi Basin. Based on the youngest age, together with the contact relationships among formations, we propose that the Fenghuangshan Formation formed in the Early–Middle Triassic, the Fangzi Formation in the Middle–Late Jurassic, the Santai Formation after the Late Jurassic, and the Wennan Formation after the Early Cretaceous. These results, together with previously published data, indicate that: (1) the sediments of the Fenghuangshan Formation were sourced from the Precambrian basement and from late Paleozoic to early Mesozoic igneous rocks in the northern part of the NCB; (2) the sediments of the Fangzi and Santai formations were sourced from the Precambrian basement, late Paleozoic to early Mesozoic igneous rocks in the northern part of the NCB, and the Sulu terrane, as well as from Middle–Late Jurassic igneous rocks in the southeastern part of the NCB; and (3) the Wennan Formation was sourced from the Tongshi intrusive complex, the Sulu terrane, and minor Precambrian basement and Early Cretaceous igneous rocks. The evolution of detrital provenance indicates that in the Early–Middle Triassic, the northern part of the NCB was higher than its interior; during the Late Triassic to Early Jurassic, the eastern NCB was uplifted, resulting in a period of non-deposition; and an important transition from a compressional to an extensional tectonic regime occurred during the Middle–Late Jurassic. The presence of Neoproterozoic and Triassic detrital zircons in the Fangzi Formation sourced from the Sulu terrane suggests that large-scale sinistral strike-slip movement along the Tan-Lu Fault Zone did not occur after the Middle Jurassic (ca. 175 Ma).
Keywords:Detrital zircons  U–Pb and Hf isotopes  Mesozoic basin  Tectonic evolution  Eastern North China block
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号