首页 | 本学科首页   官方微博 | 高级检索  
     

顾及邻近点变形因素的高斯过程建模及预测
引用本文:周昀琦,王奉伟,周世健,罗亦泳,周清. 顾及邻近点变形因素的高斯过程建模及预测[J]. 测绘科学, 2018, 0(4): 114-121. DOI: 10.16251/j.cnki.1009-2307.2018.04.019
作者姓名:周昀琦  王奉伟  周世健  罗亦泳  周清
作者单位:Environmental and Geomatics Engineering Department, University College London, London, U.K.同济大学测绘与地理信息学院,上海,200092南昌航空大学,南昌,330063东华理工大学测绘工程学院,南昌,330013
基金项目:国家自然科学基金项目(41374007),江西省自然科学基金项(20151BAB213031)
摘    要:针对传统的变形监测建模方法一般针对单一监测点的变形预测模型,未考虑到监测点间相互作用的变形特点,该文分析了变形监测点间的相互关联性,通过相关系数法对监测点进行分类,并将邻近监测点的观测序列值作为和时间因素等同的影响因子应用到建模过程中,利用高斯过程算法进行训练,建立预测模型。为提高高斯过程算法的模型预测精度,应选择适合工程案例最优协方差函数。通过实例分析,比较GM(1,1)、多点灰色预测模型和顾及邻近点变形因素的高斯过程等3种模型在基坑围岩、滑坡等变形监测数据处理中的预测精度,表明该文算法考虑到监测点间的变形关联性,充分利用高斯过程在针对小样本、非线性数据建模时的高自适应性等优点,具有较高的预测精度。

关 键 词:多点灰色预测  高斯过程  相关性分析  变形预测  multi-point grey prediction  Gaussian process  correlation analysis  deformation prediction

Modeling and prediction of Gaussian process considering the deformation factors of adjacent points
ZHOU Yunqi,WANG Fengwei,ZHOU Shijian,LUO Yiyong,ZHOU Qing. Modeling and prediction of Gaussian process considering the deformation factors of adjacent points[J]. Science of Surveying and Mapping, 2018, 0(4): 114-121. DOI: 10.16251/j.cnki.1009-2307.2018.04.019
Authors:ZHOU Yunqi  WANG Fengwei  ZHOU Shijian  LUO Yiyong  ZHOU Qing
Affiliation:Environmental
Abstract:Aiming at the problem that traditional deformation monitoring models are generally built based on the data only with a single monitoring point,without taking the deformation characteristics of the interaction between the monitoring points into account,this paper analyzed the mutual association of the deformation monitoring and classified monitoring points using the method of correlation coefficient,then the observed sequence values of adjacent monitoring points were taken as the same as time factors and applied to the modeling process.Finally,Gaussian process algorithm was used for training to establish the prediction model.The optimal covariance function of the engineering case was selected in order to improve the prediction accuracy of the GP algorithm.By comparing the prediction accuracy of three models which contained the GM(1,1)、M-GM(1,1)and the GP model with two examples of surrounding rock and landslide of foundation pit.Experimental results showed that the algorithm considering the monitoring point deformation relationship made full use of the the high self adaptability of Gaussian process in the small sample and nonlinear data modeling with higher prediction accuracy.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号