首页 | 本学科首页   官方微博 | 高级检索  
     

道路网匹配的蚁群算法求解模型
引用本文:巩现勇, 武芳, 姬存伟, 翟仁健. 道路网匹配的蚁群算法求解模型[J]. 武汉大学学报 ( 信息科学版), 2014, 39(2): 191-195. DOI: 10.13203/j.whugis20120649
作者姓名:巩现勇  武芳  姬存伟  翟仁健
作者单位:1 信息工程大学地理空间信息学院,河南 郑州,450052;2 地理信息工程国家重点实验室,陕西 西安,710054
基金项目:国家自然科学基金资助项目(41171354,41101362,41171305);地理信息工程国家重点实验室开放研究基金资助项目(SKLGIE2013-M-4-6)~~
摘    要:目的 利用蚁群算法的群体优势,寻找全局最优的道路网同名实体匹配方案。首先从几何矢量误差和结构特征两方面建立了匹配问题的数学约束模型;然后阐述了蚁群算法求解匹配问题的基本原理,设计了问题求解模型,并引入自适应和局部搜索策略提高了算法效率;最后给出了求解的关键步骤。实验证明,利用蚁群算法进行道路网匹配是有效、可行的,为求解匹配问题提供了新思路。

关 键 词:数据更新  同名实体匹配  蚁群算法  组合优化
收稿时间:2013-05-29
修稿时间:2014-02-05

Ant Colony Optimization Approach to Road Network Matching
GONG Xianyong, WU Fang, JI Cunwei, ZHAI Renjian. Ant Colony Optimization Approach to Road Network Matching[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 191-195. DOI: 10.13203/j.whugis20120649
Authors:GONG Xianyong  WU Fang  JI Cunwei  ZHAI Renjian
Affiliation:1Institute of Surveying and Mapping,Information Engineering University,Zhengzhou 450052,China;2State Key Laboratory of Geo-information Engineering,Xi’an 710054,China
Abstract:Objective Corresponding feature matching,essentially as a matter of global combinatorial optimiza-tion,is one of the key technologies for geospatial data integration,fusion and update.In this paper,aglobal optimum matching solution is achieved taking the advantages of ant colony optimization groupsand random search,without the centralized control and global model.The basic principle of ant colonyoptimization for road network matching is explained first,with a mathematical constraint model con-sidering both geometric error and structural characteristics.Then,the matching problem solutionmodel is designed,with a self-adaptation and local search strategy employed to improve efficiency.Fi-nally,the key steps are given.Experiments show that the ant colony optimization approach is effec-tive,feasible and practical,providing a new idea for road network matching.
Keywords:spatial data update  corresponding feature matching  ant colony optimization  combinato-rial optimization
本文献已被 CNKI 等数据库收录!
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号