首页 | 本学科首页   官方微博 | 高级检索  
     

简化自协方差最小二乘噪声估计的SINS静基座初始对准
引用本文:林旭, 罗志才, 周波阳. 简化自协方差最小二乘噪声估计的SINS静基座初始对准[J]. 武汉大学学报 ( 信息科学版), 2014, 39(5): 586-590. DOI: 10.13203/j.whugis20120172
作者姓名:林旭  罗志才  周波阳
作者单位:1 武汉大学测绘学院,湖北 武汉,430079;2 武汉大学地球空间环境与大地测量教育部重点实验室,湖北 武汉,430079;3 武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉,430079
基金项目:国家自然科学基金资助项目(41174062,41131067);中央高校基本科研业务费专项资金资助项目(2012214020206);地球空间环境与大地测量教育部重点实验室开放基金资助项目(12-02-09)~~
摘    要:目的 研究了观测噪声统计特性未知的情况下,简化的自协方差最小二乘噪声估计方法在捷联惯性导航系统静基座初始对准中的应用。该算法采用迭代计算的策略,同时进行噪声估计和初始姿态修正,估计精度较高。通过数值方法对此算法的正确性和有效性进行了验证。

关 键 词:捷联惯性导航系统(SINS)  自协方差最小二乘法  噪声估计  初始对准  Kalman滤波
收稿时间:2013-03-17
修稿时间:2014-05-05

SINS Stationary Initial Alignment Based on SimplifiedAutocovariance Least-Squares Method
LINXu, LUO Zhicai, ZHOU Boyang. SINS Stationary Initial Alignment Based on SimplifiedAutocovariance Least-Squares Method[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 586-590. DOI: 10.13203/j.whugis20120172
Authors:LINXu  LUO Zhicai  ZHOU Boyang
Affiliation:1School of Geodesy and Geomatics,Wuhan University,Wuhan 430079,China;2Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,Wuhan University,Wuhan 430079,China;3State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,China
Abstract:Objective Initial alignment is one of the key technologies of the strapdown inertial navigation system.The applications of the strapdown inertial navigation system however,are directly affected by the ac-curacy of initial alignment.Kalman filtering is an effective algorithm for SINS initial alignment,butthe optimal estimates are based on the filtering model and the noise covariance matrices which are al-ready known.This paper focuses on the simplified autocovariance least-squares noise estimation meth-od in the strapdown inertial navigation system’s stationary initial alignment.The proposed method es-tablishes a relationship between unknown measurement noise and the autocovariance.The noise co-variance can be estimated by solving it as a linear least squares problem.The proposed method esti-mates measurement noise and corrects INS attitude by iterative calculation.Simulation results showthat the proposed method performs very well in noise covariance estimation and strapdown inertialnavigation system initial alignment.
Keywords:SINS  autocovariance least-squares method  noise estimation  initial alignment  Kalmanfilter
本文献已被 CNKI 等数据库收录!
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号