首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A comparison of East Asian summer monsoon simulations from CAM3.1 with three dynamic cores
Authors:Ting Wei  Lanning Wang  Wenjie Dong  Min Dong  Jingyong Zhang
Institution:1. College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
2. College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
3. State Key Laboratory for Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, 100875, China
4. China National Climate Center, China Meteorological Administration, Beijing, 100081, China
5. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
Abstract:This paper examines the sensitivity of CAM3.1 simulations of East Asian summer monsoon (EASM) to the choice of dynamic cores using three long-term simulations, one with each of the following cores: the Eulerian spectral transform method (EUL), semi-Lagrangian scheme (SLD) and finite volume approach (FV). Our results indicate that the dynamic cores significantly influence the simulated fields not only through dynamics, such as wind, but also through physical processes, such as precipitation. Generally speaking, SLD is superior to EUL and FV in simulating the climatological features of EASM and its interannual variability. The SLD version of the CAM model partially reduces its known deficiency in simulating the climatological features of East Asian summer precipitation. The strength and position of simulated western Pacific subtropical high (WPSH) and its ridge line compare more favourably with observations in SLD and FV than in EUL. They contribute to the intensification of the south-easterly along the south of WPSH and the vertical motion through the troposphere around 30° N, where the subtropical rain belt exists. Additionally, SLD simulates the scope of the westerly jet core over East Asia more realistically than the other two dynamic cores do. Considerable systematic errors of the seasonal migration of monsoon rain belt and water vapour flux exist in all of the three versions of CAM3.1 model, although it captures the broad northward shift of convection, and the simulated results share similarities. The interannual variation of EASM is found to be more accurate in SLD simulation, which reasonably reproduces the leading combined patterns of precipitation and 850-hPa winds in East Asia, as well as the 2.5- and 10-year periods of Li?CZeng EASM index. These results emphasise the importance of dynamic cores for the EASM simulation as distinct from the simulation??s sensitivity to the physical parameterisations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号