首页 | 本学科首页   官方微博 | 高级检索  
     


Enforcing smoothness and assessing uncertainty in non-linear one-dimensional prestack seismic inversion
Authors:Omar J. Varela,Carlos Torres-Verdí  n , Mrinal K. Sen
Affiliation:Department of Petroleum and Geosystems Engineering, One University Station, Mail Stop C0300, The University of Texas at Austin, Austin TX 78712, USA;, Institute for Geophysics, Campus Mail Code R2200, The University of Texas at Austin, Austin TX 78712, USA;Now with: ExxonMobil Upstream Research Company, USA
Abstract:Estimation of elastic properties of rock formations from surface seismic amplitude measurements remains a subject of interest for the exploration and development of hydrocarbon reservoirs. This paper develops a global inversion technique to estimate and appraise 1D distributions of compressional‐wave velocity, shear‐wave velocity and bulk density, from normal‐moveout‐corrected PP prestack surface seismic amplitude measurements. Specific objectives are: (a) to evaluate the efficiency of the minimization algorithm (b) to appraise the impact of various data misfit functions, and (c) to assess the effect of the degree and type of smoothness criterion enforced by the inversion. Numerical experiments show that very fast simulated annealing is the most efficient minimization technique among alternative approaches considered for global inversion. It is also found that an adequate choice of data misfit function is necessary for a reliable and efficient match of noisy and sparse seismic amplitude measurements. Several procedures are considered to enforce smoothness of the estimated 1D distributions of elastic parameters, including predefined quadratic measures of length, flatness and roughness. Based on the general analysis of global inversion techniques, we introduce a new stochastic inversion algorithm that initializes the search for the minimum with constrained random distributions of elastic parameters and enforces predefined autocorrelation functions (semivariograms). This strategy readily lends itself to the assessment of model uncertainty. The new global inversion algorithm is successfully tested on noisy synthetic amplitude data. Moreover, we present a feasibility analysis of the resolution and uncertainty of prestack seismic amplitude data to infer 1D distributions of elastic parameters measured with wireline logs in the deepwater Gulf of Mexico. The new global inversion algorithm is computationally more efficient than the alternative global inversion procedures considered here.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号