首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Observations of Low-Latitude Coronal Plumes
Authors:Y-M Wang  K Muglach
Institution:(1) Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352, USA;(2) ARTEP, Inc., Ellicott City, MD 21042, USA
Abstract:Using Fe ix/x 17.1 nm observations from the Extreme-Ultraviolet Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO), we have identified many coronal plumes inside low-latitude coronal holes as they transited the solar limb during the late declining phase of cycle 23. These diffuse, linear features appear to be completely analogous to the familiar polar plumes. By tracking them as they rotate from the limb onto the disk (or vice versa), we confirm that EUV plumes seen against the disk appear as faint, diffuse blobs of emission surrounding a brighter core. When the EIT images are compared with near-simultaneous magnetograms from the SOHO Michelson Doppler Imager (MDI), the low-latitude, on-disk plumes are found to overlie regions of mixed polarity, where small bipoles are in contact with unipolar flux concentrations inside the coronal hole. The birth and decay of the plumes are shown to be closely related to the emergence of ephemeral regions, their dispersal in the supergranular flow field, and the cancellation of the minority-polarity flux against the dominant-polarity network elements. In addition to the faint polar and nonpolar plumes associated with ephemeral regions, we note the existence of two topologically similar coronal structures: the giant plume-like features that occur above active regions inside coronal holes, and the even larger scale “pseudostreamers” that separate coronal holes of the same polarity. In all three cases, the basic structure consists of open field lines of a given polarity overlying a photospheric region of the opposite polarity; ongoing interchange reconnection at the X-point separating the open field domains from the underlying double-arcade system appears to result in the steady evaporation of material from the closed into the open region.
Keywords:Corona  structures  Coronal holes  Magnetic fields  corona  Magnetic fields  photosphere  Magnetic reconnection  observational signatures
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号