首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Munni Munni Complex, Western Australia: Stratigraphy, Structure and Petrogenesis
Authors:BARNES  STEPHEN J; HOATSON  DEAN M
Institution:1Commonwealth Scientific and Industrial Research Organisation, Division of Exploration and Mining, Private Bag Wembley, W.A. 6014, Australia
2Australian Geological Survey Organisation GPO Box 378, Canberra, A.C.T. 2601, Australia
Abstract:The late Archaean Munni Munni Complex is a layered mafic-ultramaficintrusion emplaced into granitic rocks of the west Pilbara Block.It consists of a lower Ultramafic Zone with a maximum thicknessof 1850 m and an overlying Gabbroic Zone at least 3600 m thick.There are strong geometrical and stratigraphic similaritiesto the Great Dyke of Zimbabwe. The Ultramafic Zone comprises multiple macrorhythmic cyclesof olivine-clinopyroxene adcumulates and mesocumulates. Layeringdips towards the centre of the intrusion and trends laterallyinto a narrow and variably contaminated chilled margin. Higherlayers extend progressively further up the sloping floor ofthe intrusion. Cryptic layering is defined by rapid fluctuationsin Cr content of cumulus clinopyroxene, accompanied by relativelysmall variation in Fe/Mg ratio. The base of the Gabbroic Zone is marked by the first appearanceof cumulus plagioclase and the simultaneous appearance of pigeoniteas a persistent cumulus phase. Magnetite appears as a cumulusphase 400–600 m above this. Gabbroic Zone cumulates showa gradual linear upward increase in Fe/Mg and an absence ofcyclic layering, suggesting crystallization in a closed chamber. Chilled margin samples show evidence of in situ contamination,but indicate that the parent magma to the ultramafic portionof the intrusion was a high-Mg, low-Ti basalt with similaritiesto typical Archaean siliceous high-Mg basalts. Partial meltingof granitic wall rocks occurred along steep side walls but wasless extensive along the shallow-dipping floor. A pyroxenitedyke, the Cadgerina Dyke, intersects the floor of the intrusionat a level close to the top of the Ultramafic Zone, and appearsto have acted as a feeder conduit to the Gabbroic Zone and theuppermost layers of the Ultramafic Zone. The contact zone between the Ultramafic Zone and the GabbroicZone is a distinctive 30–50 m thick pyroxenite layer,the Porphyritic Websterite Layer, which also exlends laterallyup the side walls of the intrusion to form a 200 m thick marginalborder zone separating Gabbroic Zone cumulates from countryrock granites. A distinctive suite of bronzite-rich xenoliths,some containing Al-rich, Cr-poor spinel seams, occurs withinand just above the Porphyritic Websterite Layer in the centralpart of the intrusion. There is a steep gradient of decreasing Cr and increasing Fe/Mgin cumulus clinopyroxenes across the upper 100 m of the UltramaficZone. A sharp downward step in Cr occurs a few metres belowthe base of the Gabbroic Zone, immediately beneath a stronglyorthocumulate layer of augite cumulate containing disseminatedplatinum-group element (PGE)-rich sulphides. Lateral pyroxenecomposition trends within the Porphyritic Websterite Layer canbe accounted for by an increase in cumulus porosity as thislayer approaches the floor of the intrusion. Quantitative modelling of pyroxene composition trends indicatesthat Ultramafic Zone cumulates crystallized from relativelysmall volumes of magma, an order of magnitude less than thesize of the magma body inferred from trends in the GabbroicZone. This conclusion, together with the geometry of the PorphyriticWebsterite Layer, implies that the Porphyritic Websterite Layermarks a level at which the chamber expanded as a result of amajor new influx of magma. Pyroxene composition trends indicatethat this influx was of a distinetly different and more fractionatedcomposition than that parental to the Ultramafic Zone. Injection of fractionated tholeiitic magma into more primitivehigh-Mg basalt resident magma formed a turbulent fountain, whichentrained the resident magma and formed a cool, dense basalhybrid layer. Crystallization of the Porphyritic WebsteriteLayer occurred where the top of this hybrid layer impinged onthe sloping floor. Continuing injection of tholeiitic magmaexpanded the thickness of the hybrid layer, causing the PorphyriticWebsterite Layer to accrete progressively up the sloping floorand the walls. After the conclusion of the influx phase, thehybrid layer became homogenized to a final tholeiite-rich composition,which eventually crystallized to form the Gabbroic Zone. Thexenolithic rocks within and above the Porphyritic WebsteriteLayer were probably derived initially by crystallization ofa contaminated silica-enriched melt layer at the roof of theintrusion, followed by detachment and sinking or slumping tothe floor. Orthopyroxene phenocrysts within the PorphyriticWebsterite Layer may also have originated within this roof zone.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号