首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characterising geotechnical model uncertainty by hybrid Markov Chain Monte Carlo simulation
Institution:1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, People''s Republic of China;2. School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, People''s Republic of China
Abstract:Geotechnical models are usually associated with considerable amounts of model uncertainty. In this study, the model uncertainty of a geotechnical model is characterised through a systematic comparison between model predictions and past performance data. During such a comparison, model input parameters (such as soil properties) may also be uncertain, and the observed performance may be subjected to measurement errors. To consider these uncertainties, the model uncertainty parameters, uncertain model input parameters and actual performance variables are modelled as random variables, and their distributions are updated simultaneously using Bayes’ theorem. When the number of variables to update is large, solving the Bayesian updating problem is computationally challenging. A hybrid Markov Chain Monte Carlo simulation is employed in this paper to decompose the high-dimensional Bayesian updating problem into a series of updating problems in lower dimensions. To increase the efficiency of the Markov chain, the model uncertainty is first characterised with a first order second moment method approximately, and the knowledge learned from the approximate solution is then used to design key parameters in the Markov chain. Two examples are used to illustrate the proposed methodology for model uncertainty characterisation, with insights, discussions, and comparison with previous methods.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号