A modeling study of the dynamics of pore water seepage from intertidal marsh sediments |
| |
Authors: | Leonard Robert Gardner |
| |
Affiliation: | Department of Geological Sciences, The University of South Carolina, Columbia, SC 29208, USA |
| |
Abstract: | A numerical boundary integral equation model has been used to simulate tidally driven transient variations in pore water seepage from salt marsh sediments into tidal channels and its subsequent recharge by tidal inundation. In general the results show that the maximum seepage discharge occurs at or near the intersection of the creek bank and the channel water surface. Over a tidal cycle typically two-thirds of the total seepage discharge occurs through the creek bank with only about a third discharging from the channel bottom. Of the creek-bank discharge up to a third occurs through the seepage face that develops above the tide line at tidal stages below mean tide. These results indicate that placement of seepage meters only on the channel bottom will not give samples or measures representative of the total seepage. Of the total recharge only about 5% occurs through the upper part of the creek bank with the remainder infiltrating vertically through the marsh platform during early stages of tidal submergence. For the platform recharge about 80% occurs within 3 m of the creek bank. Thus, most of the water that seeps out of marsh sediments is derived from sediments that lie within several meters of the creek bank and accordingly has had a relatively short residence (one to two years) in the marsh. Compared to the distal portion of the marsh this relatively rapid flushing may enhance the productivity of Spartina alterniflora in the creek-bank environment and control the differential generation of radium quartet isotopes. |
| |
Keywords: | marsh groundwater seepage |
本文献已被 ScienceDirect 等数据库收录! |