首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diffusion and the dynamics of displacive phase transitions in cryolite (Na3AlF6) and chiolite (Na5Al3F14): Multi-nuclear NMR studies
Authors:Dane R Spearing  Jonathan F Stebbins  Ian Farnan
Institution:1. Department of Geological and Environmental Sciences, Stanford University, 94305, Stanford, CA, USA
Abstract:Cryolite is a mixed-cation perovskite (Na2(NaAl)F6) which undergoes a monoclinic to orthorhombic displacive phase transition at ~550° C. Chiolite (Na5Al3F14) is associated with cryolite in natural deposits, and consists of sheets of corner sharing AlF6] octahedra interlayered with edge-sharing NaF6] octahedra. Multi-nuclear NMR line shape and relaxation time (T1) studies were performed on cryolite and chiolite in order to gain a better understanding of the atomic motions associated with the phase transition in cryolite, and Na diffusion in cryolite and chiolite. 27Al, 23Na, and 19F static NMR spectra and T1's in cryolite suggest that oscillatory motions of the AlF6] octahedra among four micro-twin and anti-phase domains in α-cryolite begin at least 150° C below the transition temperature and persist above it. Variable temperature 23Na MAS NMR further indicates diffusional exchange at a rate of at least 13 kHz between the Na sites by the time the transition temperature is reached. 27Al and 23Na T1's show the same behavior with increasing temperature, indicating the same relaxation mechanisms are responsible for both. The first order nature of the cryolite transition is apparent as a jump in the 23Na and 27Al T1's. Above the transition temperature, the T1's decrease slightly indicating that the motions responsible for the drop in T1, are still present above the transition, further supporting the dynamic nature of the high temperature phase of cryolite. Chiolite 23Na static spectra decrease in linewidth with increasing temperature, indicating increased Na diffusion, which is interpreted as occurring within the NaF6] sheets in the chiolite structure, but not between the two different Na sites. 27Al and 23Na T1's show similar behavior as in cryolite, but there is no discontinuity due to a phase transition. 19F T1's are constant from room temperature to 150° C indicating no oscillatory motion of the AlF6] octahedra in chiolite.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号