首页 | 本学科首页   官方微博 | 高级检索  
     


A method to map riparian exotic vegetation (Salix spp.) area to inform water resource management
Authors:Tanya M. Doody  Megan Lewis  Richard G. Benyon  Guy Byrne
Affiliation:1. CSIRO Water for a Healthy Country National Research Flagship, CSIRO Land and Water, Glen Osmond, South Australia;2. School of Earth and Environmental Sciences, The University of Adelaide, South Australia;3. The University of Melbourne, Department of Forest and Ecosystem Science, Parkville, Victoria;4. CSIRO Water for a Healthy Country National Research Flagship, CSIRO Land and Water, Canberra, Australian Capital Territory, Australia
Abstract:Hydrological processes within riparian environments worldwide are impacted when introduced species invade. Monitoring and management at substantial expense, are subsequently required to combat deleterious effects on the environment and stream hydrology. Willow species (Salicaceae: Salix spp.) introduced into Australia have spread throughout many riparian systems causing adverse environmental impacts, with high rates of water extraction when located within stream beds (in‐stream willows) thus altering hydrology. Strategies exist to manage willows; however, simpler, more cost‐effective methods are required to map and monitor spatial and temporal distributions. A method is presented to discriminate willow stands from surrounding native riparian vegetation using a single, very high 2 m resolution multispectral WorldView‐2 satellite image. A combination of spectral bands ‘coastal blue’ (400–450 nm), ‘red’ (630–690 nm), ‘red edge’ (705–745 nm) and ‘near infrared2’ (860–1040 nm), minimum noise fraction transformation, median filtering and maximum likelihood supervised classification provided the highest discriminatory power within a 25 km2 study area. Of the spectral bands, coastal blue, red edge and near infrared2 are new bands that are not available in other multispectral sensors. These bands proved critical to the success of discriminating willows from other land cover categories (overall accuracy of 97%). Stream channels were defined by incorporating a LiDAR‐derived digital elevation model to discriminate between willows on stream banks and within stream beds. Canopy area estimates of in‐stream willows, coupled with water savings estimates from willow removal, suggest removal of 10.4 ha of Salix fragilis canopy from within river channels in the study area will potentially return 41 ML year?1 to the environment. The method presented improves our understanding of willow impacts on hydrology and aids decisions regarding willow removal for water resource management. Copyright © 2013 John Wiley & Sons, Ltd.
Keywords:WorldView‐2  Salix  Australia  weed  invasive  water salvage  water savings  remote sensing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号