Abstract: | In this paper, the decadal predictability and forecast skill of the Sea Surface Temperature Anomalies (SSTA) in the North Pacific and North Atlantic Ocean were investigated by conducting three sets of perfect model forecast experiments using a global coupled general circulation model. The results show that the annual mean SSTA in the North Pacific is less predictable on decadal time scale, with the forecast skill notably weaker than that of the North Atlantic. By analyzing the predictability and forecast skill of seasonal mean SSTA, it is found that the decadal predictability and forecast skill of the winter mean (JFM) SSTA in the central and western North Pacific are significantly higher than those of other seasons, and the magnitude is comparable with that of the North Atlantic. The predictability and forecast skill of the North Atlantic SSTA also show seasonal variations. Further analysis indicates that the seasonal dependence of the SSTA decadal predictability and forecast skill in the North Pacific is due to the winter-to-winter reemergence mechanism of SSTA in the North Pacific, which results from the seasonal variation of the mixed layer depth of the North Pacific Ocean. While the seasonal dependence of the North Atlantic SSTA predictability and forecast skill might be related to seasonal variations of other processes, such as the Atlantic Decadal Oscillation. The results of this paper suggest that for decadal climate prediction, if the forecast skill of the seasonal mean is taken into account, we might obtain higher than annual mean forecast skill for some seasons. |