首页 | 本学科首页   官方微博 | 高级检索  
     


Distinguishing extensive and intensive properties for meaningful geocomputation and mapping
Authors:Simon Scheider  Mark D. Huisjes
Affiliation:Department of Human Geography and Planning, Utrecht University, The Netherlands
Abstract:A most fundamental and far-reaching trait of geographic information is the distinction between extensive and intensive properties. In common understanding, originating in Physics and Chemistry, extensive properties increase with the size of their supporting objects, while intensive properties are independent of this size. It has long been recognized that the decision whether analytical and cartographic measures can be meaningfully applied depends on whether an attribute is considered intensive or extensive. For example, the choice of a map type as well as the application of basic geocomputational operations, such as spatial intersections, aggregations or algebraic operations such as sums and weighted averages, strongly depend on this semantic distinction. So far, however, the distinction can only be drawn in the head of an analyst. We still lack practical ways of automation for composing GIS workflows and to scale up mapping and geocomputation over many data sources, e.g. in statistical portals. In this article, we test a machine-learning model that is capable of labeling extensive/intensive region attributes with high accuracy based on simple characteristics extractable from geodata files. Furthermore, we propose an ontology pattern that captures central applicability constraints for automating data conversion and mapping using Semantic Web technology.
Keywords:Extensive and intensive properties  geocomputation  mapping  automated semantic labeling of geodata  meaningful analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号