Distinguishing extensive and intensive properties for meaningful geocomputation and mapping |
| |
Authors: | Simon Scheider Mark D. Huisjes |
| |
Affiliation: | Department of Human Geography and Planning, Utrecht University, The Netherlands |
| |
Abstract: | A most fundamental and far-reaching trait of geographic information is the distinction between extensive and intensive properties. In common understanding, originating in Physics and Chemistry, extensive properties increase with the size of their supporting objects, while intensive properties are independent of this size. It has long been recognized that the decision whether analytical and cartographic measures can be meaningfully applied depends on whether an attribute is considered intensive or extensive. For example, the choice of a map type as well as the application of basic geocomputational operations, such as spatial intersections, aggregations or algebraic operations such as sums and weighted averages, strongly depend on this semantic distinction. So far, however, the distinction can only be drawn in the head of an analyst. We still lack practical ways of automation for composing GIS workflows and to scale up mapping and geocomputation over many data sources, e.g. in statistical portals. In this article, we test a machine-learning model that is capable of labeling extensive/intensive region attributes with high accuracy based on simple characteristics extractable from geodata files. Furthermore, we propose an ontology pattern that captures central applicability constraints for automating data conversion and mapping using Semantic Web technology. |
| |
Keywords: | Extensive and intensive properties geocomputation mapping automated semantic labeling of geodata meaningful analysis |
|
|