首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Impact melt dikes in the Sudbury multi-ring basin (Canada): Implications from uranium-lead geochronology on the Foy Offset Dike
Authors:Markus OSTERMAN  Urs SCH RER  Alexander DEUTSCH
Institution:Markus OSTERMAN,Urs SCHÄRER,Alexander DEUTSCH
Abstract:Abstract To investigate the origin of Offset Dikes and their age relationships to major impact generated lithologies in the Sudbury multi-ring impact structure, such as the Main Mass of the Sudbury “Igneous” Complex, zircon and baddeleyite were dated by the U-Pb chronometer. The rocks analysed are one diorite and two quartz diorites from inside the Foy Offset, one quartz diorite from the contact zone, and two country rock samples collected at 10 and 30 m distances from the contact within the Levack Gneiss Complex. The 21 analysed zircon and baddeleyite fractions yield a crystallization age of 1852 +4/-3 (2σ) Ma for the accessory minerals in the Foy Offset Dike and an age of 2635 ± 5 Ma for the shocked Levack country rock, in which zircons show significant shock effects (multiple sets of planar fractures), in contrast to the totally unshocked zircons of the Offset Dike. Within given errors, the new age of 1852 Ma is identical to the pooled 1850 ± 1 Ma U-Pb age determined by Krogh et al. (1984) as the crystallization age of accessory phases in different lithologies of the Sudbury “Igneous” Complex, which has been interpreted to represent the coherent impact melt sheet of the Sudbury Structure. This excellent agreement of the ages substantiates that emplacement of the Offset Dikes occurred coevally with the formation of the impact melt sheet. Total absence of inherited zircons in the central part of the Foy Offset indicates melting of the precursor material at temperatures well above 1700 °C, which emphasizes the origin of the dike lithologies by impact melting.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号