首页 | 本学科首页   官方微博 | 高级检索  
     


Parametrisation of the orographic enhancement of precipitation and deposition in a long-term, long-range transport model
Authors:D. S. Lee  R. D. Kingdon  J. A. Garland  B. M. R. Jones
Affiliation:(1) Defence Evaluation and Research Agency, Propulsion and Performance Department, Pyestock, Farnborough, Hampshire GU14 0LS, United Kingdom;(2) Wantage, Oxfordshire, United Kingdom;(3) AEA Technology Environment, Culham Laboratory, Abingdon, Oxfordshire, OX14 3DB, United Kingdom
Abstract:Orographic enhancement of wet deposition arising from the lsquoseeder-feederrsquo effect is, by necessity, highly parametrised in long-range transport models of acid deposition that are long-term (i.e. annual average) and spatially resolved at tens of kilometres. Here, we describe a mechanistic approach to the incorporation of these mechanisms into such a model. The model formulation required the following: precipitation rate by direction and quantification of the fractions that are orographic and non-orographic; treatment of the fast oxidation of sulfur dioxide in clouds; the directionality of the seeder-feeder process; and a quantitative basis for increasing wet deposition factors to account for the seeder-feeder process. The directionality of non-orographic precipitation was determined from meteorological data at 47 sites across the UK. Orographic precipitation varies on a much finer scale than can be interpolated from measurements, and thus a modelling approach was adopted. The directionality of the seeder-feeder effect was taken from measurements. The enhancement factor of the orographic component of precipitation, assumed to represent feeder-rain, was determined from a review of measurements. Fast oxidation of sulfur dioxide is an observed phenomenon in cap-cloud, but limited in duration. An adjustment was made to the sulfur dioxide oxidation rate in the model in locations where cap-cloud was assumed to be present. The results from the model were compared with UK deposition budgets and enhanced wet deposition maps. The Revised parametrisation underestimated the UK wet deposition budgets of oxidised N and S, but spatial patterns of deposition were improved for much of the UK. It was concluded that this was a satisfactory outcome given the constraints of the statistical approach of weighting of deposition at receptors utilising straight line trajectories. The sensitivity of the model to directional constraints of seeder-feeder enhancement was tested and it was concluded that a fairly narrow constraint resulted in similar estimations to a broader one, and the broader constraint was thus adopted as frontal conditions which result in the process arrive from a fairly broad band of directions. When enhancement was allowed to occur from all directions, UK wet deposition of oxidised N and S was increased by 10%. The sensitivity to the enhancement factor on wet deposition was tested and found to be relatively robust. An increase in the enhancement factor from 2 to 6 resulted in increases in UK wet deposition of oxidised N and S of 9 and 6%, respectively.
Keywords:Atmospheric composition and structure (pollution –   urban and regional)  Meteorology and atmospheric dynamics (precipitation)
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号