首页 | 本学科首页   官方微博 | 高级检索  
     

叶面积指数遥感尺度效应与尺度纠正
作者姓名:刘良云
作者单位:1.中国科学院遥感与数字地球研究所遥感科学国家重点实验室,中国科学院数字地球重点实验室
基金项目:国家自然科学基金(编号:41325004);“中国科学院新型对地观测系统科技创新交叉合作团队”项目
摘    要:
由于地表空间异质性的普遍存在,遥感反演模型的非线性必然会导致不同分辨率观测的遥感结果不一致,从而产生遥感产品尺度效应。本文研究了遥感产品尺度效应概念、模拟方法和定量计算模型,并利用锡林浩特草原研究区的实测数据,对尺度效应模型和方法进行了定量计算与验证分析。首先,基于不同升尺度方法与多尺度遥感成像机理之间的机理联系,通过"先反演再平均"与"先平均再反演"之间的差异,可计算"高"分辨率与"低"分辨率之间的遥感产品尺度差异。其次,分别以红光、近红外两波段反射率和归一化植被指数(NDVI)为自变量,对叶面积指数(LAI)非线性遥感模型进行泰勒展开,研究了模型非线性、遥感数据空间异质性对LAI遥感产品尺度差异的影响,发现高阶项可忽略,利用二阶导数项和遥感数据方差项可定量计算遥感产品尺度差异,经过二阶导数项纠正后的尺度差异相对偏差从5.6%分别降低到0.78%和1.45%。最后,分析了LAI遥感产品尺度效应的特征规律,得出以下结论:随着植被覆盖的增大,同等遥感空间异质性的LAI遥感产品尺度差异越大,且红光波段比近红外波段的尺度差异敏感性高近2个数量级;对于绝大部分陆地植被区域,存在"低分辨率低估"尺度效应,且遥感产品尺度差异的主导要素为LAI模型非线性,NDVI变量自身非线性对尺度效应贡献占23.5%;对于湿地类植被与水体混合情形,NDVI变量非线性的贡献为主导贡献,出现"低分辨率高估"尺度效应,必须利用红光、近红外两波段的二阶导数项非线性尺度差异,才能解释这一类型的LAI遥感产品尺度效应。本文建立了具有一定普适意义的遥感产品尺度效应定量模拟与尺度纠正方法,对推动定量遥感的尺度问题研究有一定参考价值。

关 键 词:尺度效应  升尺度  叶面积指数  泰勒展开  非线性  空间异质性
收稿时间:2014-04-24
修稿时间:2014-07-11
点击此处可从《遥感学报》浏览原始摘要信息
点击此处可从《遥感学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号