首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Seasonal variations of microbial sulfate and iron reduction in alkaline Pb–Zn mine tailings (Ontario, Canada)
Authors:T Praharaj  D Fortin  
Institution:aDepartment of Earth Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
Abstract:Several studies have shown that SO4-reducing bacteria (SRB) are active in acidic sulfide-rich mine tailings and sediments impacted by mining activities. SRB activity in acidic tailings has been shown to vary with seasons as a result of fluctuating in situ physico-chemical conditions. Iron-reducing bacteria (FeRB) also play an important role in Fe cycling in sediments impacted by mining activities, but their activity in mine tailings is poorly understood, despite the fact that geochemical evidence indicates that they might be active. The present study was undertaken to assess the seasonal changes in SRB and FeRB abundance and activity in alkaline Pb–Zn mine tailings (Calumet tailings) located near Ottawa, ON, Canada. Results showed that FeRB and SRB populations were present throughout the year at two different sampling sites at the Calumet tailings, but SO4 reduction rates (SRR) were lower in the spring than in the summer, indicating that SRB activity was affected by organic C availability and/or temperature. Surface agricultural runoff at one site provided ample nutrients and organic C to the tailings, but SRB activity remained lower than the site not impacted by nutrient runoff, suggesting that the type of organic C was different between the two sites and that less labile organic substrates were available to SRB in the organic-rich site. High SRB activity in the site containing low organic C inhibited the abundance of FeRB, and possibly their activity, as a result of abiotic reduction of Fe(III)-rich minerals by biogenic sulfides, which lowered the pool of final electron acceptors. The abiotic reduction pathway was consistent with the porewater data which showed that sulfide was consumed and SO4 produced, along with Fe(II). These results show a strong interdependence between SRB and FeRB activity, as observed in other environments, such as saltmarsh sediments. Low temperature did not appear to hinder FeRB abundance in alkaline tailings. Finally, despite evidence that SRB populations were active at both sites, the |S isotopic composition of the AVS and CRS fractions were not representative of biogenic sulfides, indicating that the overall S-isotope signature of mine tailings is more representative of abiotic sulfides originating from the ore body.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号