Microfungal community associated with rhizosphere soil of Zygophyllum qatarense in arid habitats of Bahrain |
| |
Authors: | Qaher A. Mandeel |
| |
Affiliation: | Department of Biology, College of Science, University of Bahrain, 32038, Isa Town Campus, State of Bahrain |
| |
Abstract: | Population density and species diversity of microfungal communities were investigated in the rhizosphere soil of the halophytic plant Zygophyllum qatarense inhabiting saline and nonsaline habitats of the arid desert environment of Bahrain. Unlike the nonsaline habitat which is situated in the physiographic zone of multiple escarpment and backslopes, the saline site is located in the coastal lowlands and is featured by high chloride content, electrical conductivity, total soluble salts and low organic matter. Soils of both habitats are sandy, slightly alkaline, poor in nutrient sources, low in water-holding capacity and mainly dominated by a salt-tolerant flora. Quantification of data for the recovery of fungi were based on colony identification and counts by a series of ten-fold dilutions plate method, using various natural, synthetic and selective media. A total of 2780 isolates, fluctuating between 25 and 1109 per sample, were recovered during the present study among all habitats, seasons and plant sizes. Grouping of these isolates has resulted in a maximum of 28 fungal taxa varied between 5 and 15 species, of which 24 were hyphomycetes, 3 ascomycetes and one was an unknown species. All the recorded species in this study, excluding the genus Fusarium, are newly reported from the arid terrestrial habitats of Bahrain. Of the encountered fungi,Cladosporium sphaerospermum was the most dominant and frequent genus, among all plant sizes, followed by Penicillium citrinam and Aspergillus fumigatus, a finding with consistent documented data from similar arid Sahara ecosystems. Examination of data, supported by analysis of relative density values, percentage recovery rates, polar ordination and diversity indices revealed that the nonsaline habitat during the dry period yielded the highest isolate frequency, species abundance, and diversity when compared with the saline habitat. Moreover, a progressive increase in colony occurrence and species diversity was equivalently associated with increment in plant size in the nonsaline habitat. Apparently, the vast majority (moderate to low occurrence class) of the reported species are rhizosphere indigenous saprophytic cellulose-decomposers, whilst the sparse taxa (high occurrence class), e.g. C. sphaerospermum, are regarded as thermo-osmotolerant. Comparison of species richness among samples suggests that small plants inhabiting nonsaline habitats during the wet and dry season were richest in species composition. It is proposed that inter- and intra-specific variation in fungal community between the above habitats reflect not only the influence of plant age and season but also extends to critical multi-soil edaphic and biotic factors involving essentially soil moisture, salinity and root growth dynamic and exudates. |
| |
Keywords: | Bahrain desert saline habitat soil fungi Zygophyllum qatarense Cladosporium sphaerospermum |
本文献已被 ScienceDirect 等数据库收录! |
|