首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemical evolution of magmatism in Archean granite-greenstone terrains
Authors:A V Samsonov  Yu O Larionova
Institution:(1) Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, Moscow, Russia;(2) Moscow State University, Moscow, Russia
Abstract:Evolution of Archean magmatism is one of the key problems concerning the early formation stages of the Earth crust and biosphere, because that evolution exactly controlled variable concentrations of chemical elements in the World Ocean, which are important for metabolism. Geochemical evolution of magmatism between 3.5 and 2.7 Ga is considered based on database characterizing volcanic and intrusive rock complexes of granite-greenstone terrains (GGT) studied most comprehensively in the Karelian (2.9–2.7 Ga) and Kaapvaal (3.5–2.9 Ga) cratons and in the Pilbara block (3.5–2.9 Ga). Trends of magmatic geochemical evolution in the mentioned GGTs were similar in general. At the early stage of their development, tholeiitic magmas were considerably enriched in chalcophile and siderophile elements Fe2O3, MgO, Cr, Ni, Co, V, Cu, and Zn. At the next stage, calc-alkaline volcanics of greenstone belts and syntectonic TTG granitoids were enriched in lithophile elements Rb, Cs, Ba, Th, U, Pb, Nb, La, Sr, Be and others. Elevated concentrations of both the “crustal” and “mantle-derived” elements represented a distinctive feature of predominantly intrusive rocks of granitoid composition, which were characteristic of the terminal stage of continental crust formation in the GGTs, because older silicic rocks and lithospheric mantle were jointly involved into processes of magma generation. On the other hand, the GGTs different in age reveal specific trends in geochemical evolution of rock associations close in composition and geological position. First, the geochemical cycle of GGT evolution was of a longer duration in the Paleoarchean than in the Meso-and Neoarchean. Second, the Paleoarche an tholeiitic associations had higher concentrations of LREE and HFSE (Zr, Ti, Th, Nb, Ta, Hf) than their Meso-and Neoarchean counterparts. Third, the Y and Yb concentrations in Paleoarchean calc-alkaline rock associations are systematically higher than in Neoarchean rocks of the same type, while their La/Yb ratios are in contrast lower than in the latter. These distinctions are likely caused by evolution of mantle magmatic reservoirs and by changes in formation mechanisms of silicic volcanics and TTG granitoids. The first of these factors was likely responsible for appearance of sanukitoid magmatic rocks in the Late Mesoarchean. Representative database considered in the work includes ca. 500 precision analyses of Archean magmatic rocks.
Keywords:granite-greenstone terrains  geochemistry  magmatism  tholeiitic and calc-alkaline associations  sanukitoid series  crust  lithospheric mantle  Paleo-  Meso-  Neoarchean
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号