首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geotechnical characterization of lignite-bearing horizons in the Afsin-Elbistan lignite basin, SE Turkey
Authors:Suphi Ural  Ferat Yuksel
Institution:Department of Mining Engineering, Cukurova University, 01330, Adana, Turkey
Abstract:The Afsin-Elbistan lignite deposit, with its 3.4 billion metric tons of reserves, is the biggest lignite basin and one of the most important resources for electrical energy production in Turkey. Kislakoy mining field was selected as the first opencast mine to feed four power station blocks of 300 MW each. Slope instability has been a continuing problem in the Kislakoy opencast mine. Particularly complex failures along a noncircular failure surface appearing at the final slope stage and covering large areas in the mine increase the importance of slope stability. This study outlines the geotechnical characteristics of the lignite-bearing horizons and describes the causes and mechanisms of slope instabilities, which threaten the safety of the mine. Quantitative X-ray diffraction (XRD) analyses were carried out using an interactive data processing system (SIROQUANT™) based on Rietveld interpretation methods. Parametric slope stability analysis and backanalysis were carried out for the failure that occurred at the northwestern final slope stage of the mine. The Spencer-Wright limiting state equilibrium method was used in order to determine with confidence the most representative values of regional shear strength parameters, to explain the failure mechanism, and to assess the conditions at the time of failure. In the analysis, phreatic and piezometric surfaces were considered.Site observations and numerous backanalyses of the slope failure reveal that a compound slide occurred where gyttja (contact zone) layers rest directly on the lignite. Gyttja (contact zone) contains the weakest material within the system. The analysis showed that the main cause of the northwestern slope instability was the presence of the groundwater flow within a Quaternary aquifer (through buried valleys), reducing the effective shear strength of the slope materials. It is also noted from backanalysis that the gyttja (contact zone) layer presents a shear strength at, or approaching, the residual value at the time of failure.
Keywords:Lignite  Opencast mining  Geotechnical characterization  Slope stability  Backanalysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号