首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermal and mechanical evolution of the Michigan Basin
Authors:WF Haxby  DL Turcotte  JM Bird
Abstract:We examine the formation of the Michigan Basin in terms of elastic flexure of the lithosphere. The shape of the flexure accurately determines the flexural rigidity of the lithosphere and the lateral extent of the load responsible for the flexure. The amplitude of differential subsidence then gives the magnitude of the load. Gravity anomalies in the southern peninsula of Michigan further restrain the dimensions of the load. We propose a model for the formation of the Michigan Basin involving mantle diapirs. We suggest that the first stage in its evolution was diapiric penetration of the lithosphere by hot asthenospheric mantle rock to the vicinity of the Moho. The heating of the lower crust by these hot rocks caused the transformation of lower crust, meta-stable gabbroic rocks to eclogite. Initially the lighter mantle rocks nearly balanced the heavier eclogite. As the mantle rocks cooled by conduction, the basin subsided under the load of the eclogite. The thermal contraction mechanism is supported by evidence that the flexural rigidity of the lithosphere increases with time. This is the effect of thickening of the elastic lithosphere as cooling progresses.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号