首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Exploitation of gold in a historic sewage sludge stockpile, Werribee, Australia: resource evaluation, chemical extraction and subsequent utilisation of sludge
Authors:Shane J Reeves  Ian R Plimer  David Foster
Institution:a University of Melbourne, School of Earth Sciences, Parkville, Melbourne, VIC 3052, Australia;b Metallurgy International, 26 Doveton Street, Castlemaine, VIC 3450, Australia
Abstract:Sewage sludges are dewatered end products of human sewage waste and are recognised repositories of organic pollutants and heavy metals. They may be considered targets for economic extraction of Au because of the documented Au content of sewage sludges worldwide which are of the order of some ore deposits currently mined for Au. They are also highly nutrient enriched (nitrogen and phosphorus) and therefore amenable to use as agricultural fertiliser or as covers for mine wastes. The sewage of Melbourne, Australia, a city with a current population of 3.3 million, was stockpiled in large, closed, lagoonal tanks from 1898 until 1980. In 1995 Echidna Mining, an Australian gold exploration company, acquired the exploration rights to the ground surrounding the historic sludge reserves and commenced a program of resource evaluation, utilising RNAA, INAA, GFAAS, ICP–MS and FLAAS to determine 31 elements, including Au, Ag, Sb, As, Cd, Hg, Zn, Cu, and Pb. The study was initiated to determine Au, Ag and other metal variations in both space and time and to investigate the economics of chemical extraction of the precious metals. A total of 149 samples from over 50 hand-auger drillholes to a depth up to 4 m have been analysed from the stockpiles, with Au assays yielding remarkably consistent results. Average grades of 0.77 g/t Au and 18.8 g/t Ag have been documented for a measured resource of 770,000 m3 (of an estimated 1.6–2.5 million m3 contained) at a density of 1.0 g/cm3 and an average moisture content of around 40%. Laboratory-based extractive metallurgy of the Werribee sludges has demonstrated that Au, Ag and Zn can be removed with relative ease by heap-leaching using modified conventional technology, albeit with prohibitive reagent consumption. The extraction of the precious metals also results in the variable removal of contaminant metals such as Cd, As, Sb, Hg and Cr which may render the sludges fit for sale as agricultural fertiliser, provided organic pollutants and pathogenic organisms are below governmental environmental protection limits, an area beyond the scope of this paper. Another potential avenue of the exploitation of sewage sludges is discussed: that of the utilisation of sludges to extract contaminant metals from waste water and contaminated mine waters, which we demonstrate on pure aqueous synthetic samples. This paper presents a study of the exploitation of an historic sludge resource for its contained Au and residue post-metal extraction.
Keywords:Australia  Au  sewage sludge  metal extraction  fertiliser
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号