首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fluid composition and origin in the hydrothermal system of the Nezhdaninsky gold deposit,Sakha (Yakutia), Russia
Authors:N S Bortnikov  G N Gamyanin  O V Vikent’eva  V Yu Prokof’ev  V A Alpatov  A G Bakharev
Institution:(1) Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, Staromonetnyi per. 35, Moscow, 119017, Russia;(2) Institute of Geology of Diamonds and Precious Metals, Siberian Division, Russian Academy of Sciences, pr. Lenina 39, Yakutsk, 677891, Repulic of Sakha (Yakutia), Russia
Abstract:Petrochemical characteristics of igneous, sedimentary, and metasomatic rocks; chemical and isotopic compositions of minerals and fluids; and PT parameters of mineral formation at the Nezhdaninsky deposit are reported. A model of hydrothermal system formation is developed on this basis. In addition to decreasing Ba/Rb and Li/Mg ratios in the course of the hydrothermal process, resulting in the formation of ore-bearing metasomatic rocks, increasing K/Ba and diminishing K/Cs ratios indicate the probable participation of magmatic fluid in the ore deposition. The agreement of the K/Rb and K/Ba ratios with the values typical of the main trend of igneous rocks (MT) implies that the K, Rb, and Ba contents were distributed in the ore-forming hydrothermal fluid according to the ratios in the source magmatic chamber. The K/Rb ratios in metasomatic rocks correspond to the MT and approach the pegmatitic-hydrothermal trend and the composition of orthomagmatic fluid of Mo-W greisen. Similar REE patterns of igneous and terrigenous rocks do not allow the REE source to be constrained unequivocally. The lithological control of lithophile element distribution testifies to the supply of host rock components to the hydrothermal system. All studied rocks and minerals are enriched in LREE. The REE total and the contribution of HREE decrease from preore to synore metasomatic rocks, from preore to regenerated carbonates, and from older to younger scheelite. A similar tendency is noted in granitoids of the Kurum pluton. The δ18O values of quartz range from +10.3 to +12.6‰ in Au-Mo-W zones, from +15.9 to +16.4‰ in metasomatic rocks, from +14.8 to +16.6‰ in gold-ore veins, and from +13.5 to +16.9‰ in silver-base-metal ore mineralization. The estimates of \(\delta ^{18} O_{H_2 O} \) suggest that water was supplied from a magmatic source (δ18O = +(5.5?9.0‰)) and as a product of sedimentary rock dehydration. High-temperature (up to 390°C) and highly concentrated (up to 31 wt % NaCl equiv) fluids participated in the mineral formation. The phase separation of the fluid into H2O-CO2 liquid and predominantly carbon dioxide gas was combined with mixing of a high-temperature and relatively highly concentrated chloride solution with a low-temperature and poorly mineralized fluid. The redox conditions varied from equilibrium with CH4-bearing fluid at the gold-molybdenum-tungsten stage to equilibrium with CO2-bearing fluid during the gold-ore stage.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号