首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A 40Ar/39Ar laser probe study of micas from the Sesia Zone, Italian Alps: implications for metamorphic and deformation histories
Authors:S M REDDY  S P KELLEY  & J WHEELER
Institution:Department of Earth Sciences, Liverpool University, Brownlow St., Liverpool L69 3BX, UK,;Department of Earth Sciences, The Open University, Milton Keynes MK7 6AA, UK
Abstract:Two samples from the Eclogite Micaschist Complex (EMC) and the Seconda Zona Diorito–Kinzigitica (IIDK) of the Sesia Zone have been studied using a high-spatial resolution laser probe 40Ar/39Ar technique with the aim of investigating the complexities of argon behaviour in metamorphic rocks and comparing their thermal histories. Data from a single large phengite grain from the EMC show a range of ages from mid-Jurassic to Upper Cretaceous. These ‘apparent age’ variations are spatially related to both location within the grain and to intragrain microstructure. Modelling of the data shows that the profile formed by the diffusion of an excess argon component into the grain, parallel to the mica cleavage. Profile asymmetry is explained by temporal variations in microstructural development enabling excess argon to enter the grain at different times in different places. The temperatures of the initiation of deformation and the possible time-scales for the deformation can be calculated as a function of cooling rate. All estimates suggest deformation at greenschist facies, in accord with the observed retrograde mineral assemblage. Absolute temperature estimates for deformation vary by less than 22 °C for different cooling rates of 10 and 30 °C Ma?1 but vary by 80 °C with different estimates of diffusion parameters. The duration of deformation was for at least 2 Ma at 10 °C Ma?1 or 0.7 Ma at 30 °C Ma?1. Biotites from the IIDK sample record a Permian to Upper Cretaceous age range that correlates with grain size, the smallest grain sizes yielding the youngest ages. This relationship is best explained by a partial resetting of biotites during an Alpine thermal event initiated not more than 70 Ma ago. Modelling of these data suggest that the sample never exceeded 300 °C during the Alpine. The profoundly different thermal histories of the two units—the EMC recrystallized at 550 °C whilst the IIDK remained below 300 °C—suggests that they may not have been juxtaposed until much later than the eclogite facies metamorphism.
Keywords:diffusion  eclogite  excess argon  geochronology  Western Alps
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号