首页 | 本学科首页   官方微博 | 高级检索  
     

基于极大似然估计采样一致性准则的遥感影像配准参数解算方法研究
引用本文:宋妍,田玉刚,贾小霞. 基于极大似然估计采样一致性准则的遥感影像配准参数解算方法研究[J]. 测绘科学, 2011, 36(1): 51-54
作者姓名:宋妍  田玉刚  贾小霞
作者单位:中国地质大学信息工程学院;武汉市勘测设计研究院;
基金项目:国家自然科学基金(NO.40801213); 国家科技支撑“长三角地区自然灾害风险等级评估技术研究”(2008BAK50B07); 中国地质大学(武汉)优秀青年教师资助计划(CUGQNL0932)
摘    要:本文提出运用最大似然采样一致性准则解算遥感影像配准系数的方法。该方法基于极大似然估计理论,首先对初始匹配点的坐标残差进行概率建模,计算概率模型成立时的似然函数值并选择似然函数值最大时的参数为正确结果,最终剔除错误点保留正确匹配点。该方法较之传统的最小二乘方法更为准确地计算配准系数,并可以解决随机采样一致性准则解算配准参数时,对阈值的依赖问题。试验证明,该方法可提高配准参数解算的稳健性和精度。

关 键 词:极大似然估计采样一致性准则  遥感影像  配准  精度

Resolving method of remote sensing image registration coefficient based on Maximum Likelihood Estimation Sample Consensus
SONG Yan,TIAN Yu-gang,JIA Xiao-xia. Resolving method of remote sensing image registration coefficient based on Maximum Likelihood Estimation Sample Consensus[J]. Science of Surveying and Mapping, 2011, 36(1): 51-54
Authors:SONG Yan  TIAN Yu-gang  JIA Xiao-xia
Affiliation:②(①Faculty of Information Engineering,China University of Geosciences,Wuhan 430074,China;②Wuhan Geotechnical Engineering and Surveying Institute,Wuhan 430022,China)
Abstract:This paper proposed an resolving method of image registration coefficient which utilizes Maximum Likelihood Estimation Sample Consensus(MLESAC).The method originates from Maximum Likelihood Estimation theory.At first,it made probablity modeling of initial correspondence points.And then it calculated the value of likelihood function assuming the model was correct.At last,MLESAC algorithm selected the coefficient which has the max value of likelihood function as final result,and removed wrong match points.Com...
Keywords:maximum likelihood estimation sample consensus  remote sensing image  registration  precision  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号